开源项目最佳实践教程:AttributionPriors
2025-04-25 14:10:03作者:虞亚竹Luna
1. 项目介绍
AttributionPriors 是一个基于 Python 的开源项目,旨在通过利用先验知识来改进神经网络的属性归因技术。该项目由苏黎世联邦理工学院(ETH Zurich)的 Suin Lee 实验室开发,旨在解决神经网络模型中的归因问题,特别是在模型训练过程中如何更好地理解和解释模型的决策机制。
2. 项目快速启动
要快速启动 AttributionPriors 项目,请按照以下步骤操作:
首先,确保你已经安装了以下依赖库:
- Python 3.6 或更高版本
- PyTorch 1.0 或更高版本
- NumPy
- Matplotlib
- scikit-learn
接下来,克隆项目仓库:
git clone https://github.com/suinleelab/attributionpriors.git
cd attributionpriors
安装项目依赖:
pip install -r requirements.txt
现在,你可以运行示例代码来测试你的环境是否配置正确:
# 运行示例代码
python examples/example.py
3. 应用案例和最佳实践
应用案例
AttributionPriors 可以用于多种场景,比如图像分类、文本分析等。以下是一个简单的图像分类案例,展示了如何使用该库来理解模型对图像的归因:
from attributionpriors import Prior attribution
import torch
import torchvision.models as models
from torchvision import transforms
from PIL import Image
# 加载预训练的模型
model = models.vgg16(pretrained=True)
model.eval()
# 图像预处理
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 加载图像
img = Image.open('path_to_your_image.jpg')
img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0)
# 获取归因图
attribution = Prior attribution(model, batch_t)
attribution_map = attribution.get_attribution_map()
最佳实践
- 在应用
AttributionPriors时,确保你的模型是可导的,并且模型的输入输出都已正确配置。 - 使用预训练的模型可以减少训练时间,并且通常能够提供更好的归因结果。
- 为了获得更准确的归因图,可以考虑使用不同种类的先验知识。
4. 典型生态项目
AttributionPriors 是归因分析领域的一个典型项目,与它类似的开源项目还包括:
- LRP (Layer-wise Relevance Propagation)
- Integrated Gradients
- SHAP (SHapley Additive exPlanations)
这些项目都旨在提供对神经网络决策过程的解释,并且有着广泛的应用场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355