AWS Deep Learning Containers发布PyTorch 2.6.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置深度学习环境容器镜像,它集成了主流深度学习框架和必要的依赖库,帮助开发者快速部署机器学习应用而无需手动配置环境。这些容器镜像经过AWS优化,能够充分发挥云端计算资源的性能优势。
近日,AWS DLC项目发布了PyTorch 2.6.0版本的推理专用容器镜像,支持Python 3.12运行环境。这些镜像针对EC2实例进行了特别优化,提供了CPU和GPU两种计算架构的选择。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:基于Ubuntu 22.04系统,预装了PyTorch 2.6.0 CPU版本及其相关生态工具。该镜像适合不需要GPU加速的推理场景,或者开发测试环境使用。
-
GPU版本:同样基于Ubuntu 22.04系统,但预装了支持CUDA 12.4的PyTorch 2.6.0 GPU版本。该镜像充分利用了NVIDIA GPU的并行计算能力,适合高性能推理需求。
关键技术组件
两个版本的镜像都包含了PyTorch生态系统的核心组件:
- PyTorch核心库:2.6.0版本,针对CPU和GPU分别进行了优化
- TorchVision:0.21.0版本,提供计算机视觉相关模型和工具
- TorchAudio:2.6.0版本,支持音频处理任务
- TorchServe:0.12.0版本,用于模型部署和服务化
此外,镜像还预装了常用的科学计算和数据处理的Python库,如NumPy 2.2.3、SciPy 1.15.2、Pandas 2.2.3等,以及OpenCV 4.11.0用于图像处理。
系统级优化
AWS对这些镜像进行了系统级的优化:
- 编译器支持:包含了GCC 11工具链和对应的标准库,确保代码编译效率
- 数学库优化:集成了Intel MKL 2025.0.1数学核心库,加速矩阵运算
- CUDA支持:GPU版本完整支持CUDA 12.4和cuDNN,充分发挥NVIDIA GPU性能
- 系统工具:预装了常用开发工具如emacs,方便开发者调试
使用场景建议
这些预构建的PyTorch推理镜像特别适合以下场景:
- 云端模型部署:快速将训练好的PyTorch模型部署到AWS EC2实例
- 推理服务构建:基于TorchServe搭建可扩展的模型服务
- 开发测试环境:为团队提供一致的开发环境,避免"在我机器上能运行"的问题
- CI/CD流水线:作为构建和测试环节的标准环境
版本兼容性说明
需要注意的是,这些镜像使用的是Python 3.12环境,开发者需要确保自己的代码和依赖库兼容此版本。同时,PyTorch 2.6.0引入了一些新特性和API变化,从旧版本迁移时可能需要相应调整。
AWS Deep Learning Containers持续为机器学习开发者提供开箱即用的解决方案,通过使用这些优化过的容器镜像,开发者可以专注于模型和业务逻辑,而不必花费大量时间在环境配置和性能调优上。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00