探索未来追踪技术:CSS指纹识别与超cookies的革命
在Web安全和隐私保护领域,新的挑战不断涌现。今天,我们将引入一个令人深思的开源项目:CSS Fingerprinting。这个实验性方法揭示了一种基于CSS的跟踪技术和纯CSS "超级cookies"的概念,它可能会改变我们对网络匿名性的理解。
项目简介
CSS Fingerprinting是一个巧妙利用CSS特性的技术,用于收集访客浏览器和设备的信息,以进行身份识别或跟踪。无需JavaScript或cookies,仅通过媒体查询和样式选择器,就能获取到访问者的大量信息。
技术解析
项目的工作原理是发送一系列针对特定浏览器特征的媒体查询。浏览器会选择适用的样式,并将这些信息以背景图片URL的形式回传给服务器。然后,服务器通过返回410( Gone)状态码,防止后续请求中重复传输这些信息。
例如,检测用户的输入设备类型:
.pointer {
background-image: url('/some/url/pointer=none');
}
@media (any-pointer: coarse) {
.pointer {
background-image: url('/some/url/pointer=coarse');
}
}
@media (any-pointer: fine) {
.pointer {
background-image: url('/some/url/pointer=fine');
}
}
对于字体检测,如果某字体未安装,浏览器会发送请求到相应的URL。
应用场景
CSS Fingerprinting和纯CSS超级cookies可以跨源追踪访客,而无需担心NoScript、VPNs或浏览器扩展等反追踪手段。此外,当即将发布的CSS规范允许在URL中使用自定义变量时,这种方法的效率和精度都将显著提高。
项目特点
- 无痕追踪:不依赖JavaScript或Cookies,绕过许多反追踪工具。
- CSS超级cookies:通过服务器308重定向实现,持久存储于浏览器缓存,无法轻易清除。
- 高信息量:通过检测各种浏览器特性,提供详细的设备指纹。
示例与研究
本项目包含一个旧方法的实现以及如何使用的示例。你也可以在CSS-Fingerprint-Study中找到更详细的研究。
讨论与改进
进一步的研究方向包括:NoScript检测、属性细化、异步加载和JS交互优化、操作系统和浏览器识别,以及XSS攻击防范。项目的贡献者们正致力于提升性能和准确性。
结语
尽管目前CSS Fingerprinting可能仍存在一些局限,但它展示了未来网络追踪技术的可能性。了解并研究这样的技术,可以帮助我们更好地应对隐私挑战,推动网络安全的发展。如果你对此感兴趣,不妨参与进来,一起探索这个开源项目!
许可证:MIT - 教育目的使用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00