如何在nnUNet项目中部署训练好的模型并进行预测可视化
2025-06-02 10:54:28作者:董斯意
模型预测结果可视化方法
在nnUNet项目中完成模型训练后,用户通常需要查看预测结果以评估模型性能。由于nnUNet本身不提供图像可视化功能,需要借助第三方医学影像处理软件实现:
- 3D Slicer:功能强大的开源医学影像分析平台,支持加载和查看3D医学影像数据及其分割结果
- MITK:医学影像交互工具包,提供专业的医学影像处理功能
- napari:Python开发的轻量级多维图像查看器,适合集成到Python工作流中
这些工具都能直接加载nnUNet输出的nii.gz格式文件,并支持多平面重建、透明度调节等高级可视化功能。对于3D医学影像数据,3D Slicer因其完整的3D可视化功能而成为推荐选择。
模型集成与DICOM转换实现
将训练好的nnUNet模型集成到现有工作流中需要以下几个关键步骤:
1. 模型加载与预测
nnUNet提供了专门的预测接口,可以通过以下方式调用:
from nnunetv2.inference.predict_from_raw_data import predict_from_raw_data
# 模型配置参数
input_files = [...] # 输入文件列表
output_folder = ... # 输出目录
model_training_output_dir = ... # 训练输出目录
model = '2d' # 或'3d_fullres'等,根据训练配置选择
folds = (0, 1, 2, 3, 4) # 使用的交叉验证折数
trainer_name = 'nnUNetTrainer' # 训练器名称
plan_id = 'nnUNetPlans' # 计划ID
# 执行预测
predict_from_raw_data(input_files, output_folder, model_training_output_dir,
model, folds, trainer_name, plan_id)
2. 结果格式转换
预测完成后,nnUNet会输出nii.gz格式的分割结果。转换为DICOM格式需要考虑:
- 元数据保留:确保转换过程中保留必要的DICOM标签信息
- 坐标系对齐:保证分割结果与原始DICOM图像的空间一致性
- 值映射:将分割标签值映射为DICOM标准值
3. 完整工作流示例
一个典型的集成工作流可能包含以下步骤:
# 1. 加载模型配置
config = load_model_config('path_to_checkpoint.pth')
# 2. 预处理输入数据
preprocessed_data = preprocess(input_dicom)
# 3. 执行预测
segmentation = predict(preprocessed_data, config)
# 4. 后处理
processed_seg = postprocess(segmentation)
# 5. 转换为DICOM
dicom_seg = convert_to_dicom(processed_seg, reference_dicom)
# 6. 保存结果
save_dicom(dicom_seg, output_path)
最佳实践建议
- 环境一致性:确保部署环境与训练环境一致,特别是Python版本和CUDA版本
- 性能优化:对于批量处理,考虑启用多线程预测
- 内存管理:大图像预测时注意内存使用,可考虑分块处理
- 结果验证:转换后务必验证DICOM文件的可读性和正确性
- 错误处理:实现完善的错误处理机制,特别是对于DICOM元数据处理
通过以上方法,用户可以有效地将nnUNet模型集成到现有医学影像处理流程中,实现从原始DICOM数据到分割结果的完整自动化处理。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1