如何在nnUNet项目中部署训练好的模型并进行预测可视化
2025-06-02 18:42:00作者:董斯意
模型预测结果可视化方法
在nnUNet项目中完成模型训练后,用户通常需要查看预测结果以评估模型性能。由于nnUNet本身不提供图像可视化功能,需要借助第三方医学影像处理软件实现:
- 3D Slicer:功能强大的开源医学影像分析平台,支持加载和查看3D医学影像数据及其分割结果
- MITK:医学影像交互工具包,提供专业的医学影像处理功能
- napari:Python开发的轻量级多维图像查看器,适合集成到Python工作流中
这些工具都能直接加载nnUNet输出的nii.gz格式文件,并支持多平面重建、透明度调节等高级可视化功能。对于3D医学影像数据,3D Slicer因其完整的3D可视化功能而成为推荐选择。
模型集成与DICOM转换实现
将训练好的nnUNet模型集成到现有工作流中需要以下几个关键步骤:
1. 模型加载与预测
nnUNet提供了专门的预测接口,可以通过以下方式调用:
from nnunetv2.inference.predict_from_raw_data import predict_from_raw_data
# 模型配置参数
input_files = [...] # 输入文件列表
output_folder = ... # 输出目录
model_training_output_dir = ... # 训练输出目录
model = '2d' # 或'3d_fullres'等,根据训练配置选择
folds = (0, 1, 2, 3, 4) # 使用的交叉验证折数
trainer_name = 'nnUNetTrainer' # 训练器名称
plan_id = 'nnUNetPlans' # 计划ID
# 执行预测
predict_from_raw_data(input_files, output_folder, model_training_output_dir,
model, folds, trainer_name, plan_id)
2. 结果格式转换
预测完成后,nnUNet会输出nii.gz格式的分割结果。转换为DICOM格式需要考虑:
- 元数据保留:确保转换过程中保留必要的DICOM标签信息
- 坐标系对齐:保证分割结果与原始DICOM图像的空间一致性
- 值映射:将分割标签值映射为DICOM标准值
3. 完整工作流示例
一个典型的集成工作流可能包含以下步骤:
# 1. 加载模型配置
config = load_model_config('path_to_checkpoint.pth')
# 2. 预处理输入数据
preprocessed_data = preprocess(input_dicom)
# 3. 执行预测
segmentation = predict(preprocessed_data, config)
# 4. 后处理
processed_seg = postprocess(segmentation)
# 5. 转换为DICOM
dicom_seg = convert_to_dicom(processed_seg, reference_dicom)
# 6. 保存结果
save_dicom(dicom_seg, output_path)
最佳实践建议
- 环境一致性:确保部署环境与训练环境一致,特别是Python版本和CUDA版本
- 性能优化:对于批量处理,考虑启用多线程预测
- 内存管理:大图像预测时注意内存使用,可考虑分块处理
- 结果验证:转换后务必验证DICOM文件的可读性和正确性
- 错误处理:实现完善的错误处理机制,特别是对于DICOM元数据处理
通过以上方法,用户可以有效地将nnUNet模型集成到现有医学影像处理流程中,实现从原始DICOM数据到分割结果的完整自动化处理。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648