如何在nnUNet项目中部署训练好的模型并进行预测可视化
2025-06-02 10:16:52作者:董斯意
模型预测结果可视化方法
在nnUNet项目中完成模型训练后,用户通常需要查看预测结果以评估模型性能。由于nnUNet本身不提供图像可视化功能,需要借助第三方医学影像处理软件实现:
- 3D Slicer:功能强大的开源医学影像分析平台,支持加载和查看3D医学影像数据及其分割结果
- MITK:医学影像交互工具包,提供专业的医学影像处理功能
- napari:Python开发的轻量级多维图像查看器,适合集成到Python工作流中
这些工具都能直接加载nnUNet输出的nii.gz格式文件,并支持多平面重建、透明度调节等高级可视化功能。对于3D医学影像数据,3D Slicer因其完整的3D可视化功能而成为推荐选择。
模型集成与DICOM转换实现
将训练好的nnUNet模型集成到现有工作流中需要以下几个关键步骤:
1. 模型加载与预测
nnUNet提供了专门的预测接口,可以通过以下方式调用:
from nnunetv2.inference.predict_from_raw_data import predict_from_raw_data
# 模型配置参数
input_files = [...] # 输入文件列表
output_folder = ... # 输出目录
model_training_output_dir = ... # 训练输出目录
model = '2d' # 或'3d_fullres'等,根据训练配置选择
folds = (0, 1, 2, 3, 4) # 使用的交叉验证折数
trainer_name = 'nnUNetTrainer' # 训练器名称
plan_id = 'nnUNetPlans' # 计划ID
# 执行预测
predict_from_raw_data(input_files, output_folder, model_training_output_dir,
model, folds, trainer_name, plan_id)
2. 结果格式转换
预测完成后,nnUNet会输出nii.gz格式的分割结果。转换为DICOM格式需要考虑:
- 元数据保留:确保转换过程中保留必要的DICOM标签信息
- 坐标系对齐:保证分割结果与原始DICOM图像的空间一致性
- 值映射:将分割标签值映射为DICOM标准值
3. 完整工作流示例
一个典型的集成工作流可能包含以下步骤:
# 1. 加载模型配置
config = load_model_config('path_to_checkpoint.pth')
# 2. 预处理输入数据
preprocessed_data = preprocess(input_dicom)
# 3. 执行预测
segmentation = predict(preprocessed_data, config)
# 4. 后处理
processed_seg = postprocess(segmentation)
# 5. 转换为DICOM
dicom_seg = convert_to_dicom(processed_seg, reference_dicom)
# 6. 保存结果
save_dicom(dicom_seg, output_path)
最佳实践建议
- 环境一致性:确保部署环境与训练环境一致,特别是Python版本和CUDA版本
- 性能优化:对于批量处理,考虑启用多线程预测
- 内存管理:大图像预测时注意内存使用,可考虑分块处理
- 结果验证:转换后务必验证DICOM文件的可读性和正确性
- 错误处理:实现完善的错误处理机制,特别是对于DICOM元数据处理
通过以上方法,用户可以有效地将nnUNet模型集成到现有医学影像处理流程中,实现从原始DICOM数据到分割结果的完整自动化处理。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
640
147
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100