Drizzle ORM中BLOB类型JSON字段的插入问题解析
2025-05-06 21:46:39作者:廉彬冶Miranda
问题背景
在使用Drizzle ORM操作SQLite数据库时,开发者遇到了一个关于BLOB类型JSON字段的特殊问题。当尝试向定义为BLOB类型但带有JSON模式的字段插入数据时,直接插入JavaScript对象会导致操作失败,而必须先将对象序列化为JSON字符串才能成功插入。
技术细节分析
字段定义方式
在Drizzle ORM中,开发者使用了如下方式定义表结构:
const table = sqliteTable('table', {
id: integer('id').primaryKey(),
jsonCol: blob('json_col', { mode: 'json' }).$type<string[]>()
});
这种定义方式表明jsonCol
字段是一个BLOB类型,但通过mode: 'json'
参数指定了它应该被当作JSON数据处理,并且通过泛型指定了TypeScript类型为字符串数组。
实际操作中的问题
开发者尝试了两种插入方式:
- 直接插入数组:
await db.update(table).set({ jsonCol: ["foo", "bar"] })
这种方式会导致错误:"Unexpected non-whitespace character after JSON at position 2 (line 1 column 3)"。
- 插入JSON字符串:
await db.update(table).set({ jsonCol: '["foo","bar"]' })
这种方式可以工作,但会产生类型错误,因为TypeScript期望的是字符串数组类型,而不是字符串。
问题根源
问题的核心在于Drizzle ORM对BLOB类型JSON字段的处理逻辑存在缺陷:
- 缺乏自动序列化:ORM没有自动将JavaScript对象序列化为JSON字符串
- 类型系统不匹配:TypeScript类型提示与实际需要的操作不一致
- 文档推荐差异:Drizzle ORM官方文档实际上推荐使用TEXT类型而非BLOB类型来存储JSON数据
解决方案与最佳实践
临时解决方案
对于已经使用BLOB类型且难以迁移的情况,开发者可以:
- 手动序列化JSON数据:
await db.update(table).set({ jsonCol: JSON.stringify(["foo", "bar"]) })
- 使用类型断言绕过类型检查:
await db.update(table).set({ jsonCol: '["foo","bar"]' as unknown as string[] })
推荐解决方案
根据Drizzle ORM的最佳实践,应该使用TEXT类型来存储JSON数据:
const table = sqliteTable('table', {
id: integer('id').primaryKey(),
jsonCol: text('json_col', { mode: 'json' }).$type<string[]>()
});
这种定义方式能够:
- 正确处理JavaScript对象的自动序列化
- 提供更准确的类型提示
- 符合SQLite存储JSON数据的最佳实践
技术原理深入
在SQLite中,虽然JSON数据可以存储在BLOB或TEXT类型中,但存在一些重要区别:
- 编码处理:TEXT类型会自动处理字符编码,而BLOB类型存储的是原始字节
- 比较操作:TEXT类型的JSON可以更方便地进行比较操作
- 性能考虑:对于纯JSON数据,TEXT类型通常有更好的查询性能
Drizzle ORM对TEXT类型的JSON模式有更完善的支持,包括:
- 自动序列化/反序列化
- 更准确的类型推断
- 更好的查询构建支持
总结
这个问题揭示了在使用ORM时需要注意的几个重要方面:
- 数据类型选择应该遵循ORM的最佳实践
- 类型系统与实际数据库操作的协调性很重要
- 在遇到类似问题时,查阅官方文档和更新日志是解决问题的第一步
对于Drizzle ORM用户,特别是使用SQLite后端的开发者,建议优先考虑使用TEXT类型而非BLOB类型来存储JSON数据,以获得更好的开发体验和更稳定的运行表现。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
195
2.17 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
79

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
207
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17