Drizzle ORM中BLOB类型JSON字段的插入问题解析
2025-05-06 12:59:14作者:廉彬冶Miranda
问题背景
在使用Drizzle ORM操作SQLite数据库时,开发者遇到了一个关于BLOB类型JSON字段的特殊问题。当尝试向定义为BLOB类型但带有JSON模式的字段插入数据时,直接插入JavaScript对象会导致操作失败,而必须先将对象序列化为JSON字符串才能成功插入。
技术细节分析
字段定义方式
在Drizzle ORM中,开发者使用了如下方式定义表结构:
const table = sqliteTable('table', {
id: integer('id').primaryKey(),
jsonCol: blob('json_col', { mode: 'json' }).$type<string[]>()
});
这种定义方式表明jsonCol字段是一个BLOB类型,但通过mode: 'json'参数指定了它应该被当作JSON数据处理,并且通过泛型指定了TypeScript类型为字符串数组。
实际操作中的问题
开发者尝试了两种插入方式:
- 直接插入数组:
await db.update(table).set({ jsonCol: ["foo", "bar"] })
这种方式会导致错误:"Unexpected non-whitespace character after JSON at position 2 (line 1 column 3)"。
- 插入JSON字符串:
await db.update(table).set({ jsonCol: '["foo","bar"]' })
这种方式可以工作,但会产生类型错误,因为TypeScript期望的是字符串数组类型,而不是字符串。
问题根源
问题的核心在于Drizzle ORM对BLOB类型JSON字段的处理逻辑存在缺陷:
- 缺乏自动序列化:ORM没有自动将JavaScript对象序列化为JSON字符串
- 类型系统不匹配:TypeScript类型提示与实际需要的操作不一致
- 文档推荐差异:Drizzle ORM官方文档实际上推荐使用TEXT类型而非BLOB类型来存储JSON数据
解决方案与最佳实践
临时解决方案
对于已经使用BLOB类型且难以迁移的情况,开发者可以:
- 手动序列化JSON数据:
await db.update(table).set({ jsonCol: JSON.stringify(["foo", "bar"]) })
- 使用类型断言绕过类型检查:
await db.update(table).set({ jsonCol: '["foo","bar"]' as unknown as string[] })
推荐解决方案
根据Drizzle ORM的最佳实践,应该使用TEXT类型来存储JSON数据:
const table = sqliteTable('table', {
id: integer('id').primaryKey(),
jsonCol: text('json_col', { mode: 'json' }).$type<string[]>()
});
这种定义方式能够:
- 正确处理JavaScript对象的自动序列化
- 提供更准确的类型提示
- 符合SQLite存储JSON数据的最佳实践
技术原理深入
在SQLite中,虽然JSON数据可以存储在BLOB或TEXT类型中,但存在一些重要区别:
- 编码处理:TEXT类型会自动处理字符编码,而BLOB类型存储的是原始字节
- 比较操作:TEXT类型的JSON可以更方便地进行比较操作
- 性能考虑:对于纯JSON数据,TEXT类型通常有更好的查询性能
Drizzle ORM对TEXT类型的JSON模式有更完善的支持,包括:
- 自动序列化/反序列化
- 更准确的类型推断
- 更好的查询构建支持
总结
这个问题揭示了在使用ORM时需要注意的几个重要方面:
- 数据类型选择应该遵循ORM的最佳实践
- 类型系统与实际数据库操作的协调性很重要
- 在遇到类似问题时,查阅官方文档和更新日志是解决问题的第一步
对于Drizzle ORM用户,特别是使用SQLite后端的开发者,建议优先考虑使用TEXT类型而非BLOB类型来存储JSON数据,以获得更好的开发体验和更稳定的运行表现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1