Drizzle ORM中BLOB类型JSON字段的插入问题解析
2025-05-06 21:46:39作者:廉彬冶Miranda
问题背景
在使用Drizzle ORM操作SQLite数据库时,开发者遇到了一个关于BLOB类型JSON字段的特殊问题。当尝试向定义为BLOB类型但带有JSON模式的字段插入数据时,直接插入JavaScript对象会导致操作失败,而必须先将对象序列化为JSON字符串才能成功插入。
技术细节分析
字段定义方式
在Drizzle ORM中,开发者使用了如下方式定义表结构:
const table = sqliteTable('table', {
id: integer('id').primaryKey(),
jsonCol: blob('json_col', { mode: 'json' }).$type<string[]>()
});
这种定义方式表明jsonCol字段是一个BLOB类型,但通过mode: 'json'参数指定了它应该被当作JSON数据处理,并且通过泛型指定了TypeScript类型为字符串数组。
实际操作中的问题
开发者尝试了两种插入方式:
- 直接插入数组:
await db.update(table).set({ jsonCol: ["foo", "bar"] })
这种方式会导致错误:"Unexpected non-whitespace character after JSON at position 2 (line 1 column 3)"。
- 插入JSON字符串:
await db.update(table).set({ jsonCol: '["foo","bar"]' })
这种方式可以工作,但会产生类型错误,因为TypeScript期望的是字符串数组类型,而不是字符串。
问题根源
问题的核心在于Drizzle ORM对BLOB类型JSON字段的处理逻辑存在缺陷:
- 缺乏自动序列化:ORM没有自动将JavaScript对象序列化为JSON字符串
- 类型系统不匹配:TypeScript类型提示与实际需要的操作不一致
- 文档推荐差异:Drizzle ORM官方文档实际上推荐使用TEXT类型而非BLOB类型来存储JSON数据
解决方案与最佳实践
临时解决方案
对于已经使用BLOB类型且难以迁移的情况,开发者可以:
- 手动序列化JSON数据:
await db.update(table).set({ jsonCol: JSON.stringify(["foo", "bar"]) })
- 使用类型断言绕过类型检查:
await db.update(table).set({ jsonCol: '["foo","bar"]' as unknown as string[] })
推荐解决方案
根据Drizzle ORM的最佳实践,应该使用TEXT类型来存储JSON数据:
const table = sqliteTable('table', {
id: integer('id').primaryKey(),
jsonCol: text('json_col', { mode: 'json' }).$type<string[]>()
});
这种定义方式能够:
- 正确处理JavaScript对象的自动序列化
- 提供更准确的类型提示
- 符合SQLite存储JSON数据的最佳实践
技术原理深入
在SQLite中,虽然JSON数据可以存储在BLOB或TEXT类型中,但存在一些重要区别:
- 编码处理:TEXT类型会自动处理字符编码,而BLOB类型存储的是原始字节
- 比较操作:TEXT类型的JSON可以更方便地进行比较操作
- 性能考虑:对于纯JSON数据,TEXT类型通常有更好的查询性能
Drizzle ORM对TEXT类型的JSON模式有更完善的支持,包括:
- 自动序列化/反序列化
- 更准确的类型推断
- 更好的查询构建支持
总结
这个问题揭示了在使用ORM时需要注意的几个重要方面:
- 数据类型选择应该遵循ORM的最佳实践
- 类型系统与实际数据库操作的协调性很重要
- 在遇到类似问题时,查阅官方文档和更新日志是解决问题的第一步
对于Drizzle ORM用户,特别是使用SQLite后端的开发者,建议优先考虑使用TEXT类型而非BLOB类型来存储JSON数据,以获得更好的开发体验和更稳定的运行表现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1