RecSys Challenge 2019:基于会话的酒店推荐系统问题解析
2025-06-18 23:19:07作者:胡唯隽
项目背景与问题定义
RecSys Challenge 2019是一个聚焦于酒店推荐系统的竞赛项目,参与者需要解决一个基于用户会话(session)的点击预测问题。核心挑战在于通过分析用户交互序列,准确识别用户意图,并动态更新推荐给用户的酒店列表。
问题本质
这是一个典型的会话型推荐系统问题,特点包括:
- 基于短期会话而非长期用户历史
 - 需要考虑用户在当前会话中的实时行为
 - 目标是预测用户在会话末尾最可能点击的酒店
 
数据架构与挑战
数据组成
项目提供两类核心数据:
1. 会话行为数据(训练集/测试集)
- 用户行为序列:包含9种不同的交互类型
 - 上下文信息:平台、设备、城市等
 - 展示列表(impressions):用户实际看到的酒店列表
 - 价格信息:与展示列表对应的实时价格
 
2. 酒店元数据
- 酒店ID与属性特征
 - 适用过滤器列表
 
技术挑战点
- 多类型行为建模:需要处理从搜索、筛选到具体项目交互的多种行为类型
 - 会话动态性:用户意图可能在会话过程中发生变化
 - 冷启动问题:对新用户和新会话的快速适应
 - 实时性要求:需要在用户当前会话中快速响应
 
评估机制详解
采用**平均倒数排名(MRR)**作为核心评估指标,这是推荐系统常用的评估方法之一。
MRR计算原理
对于每个测试样本:
- 找出用户实际点击的项目在推荐列表中的位置(rank)
 - 计算该位置的倒数(1/rank)
 - 对所有测试样本的倒数取平均
 
示例说明:
- 如果点击项在推荐列表中排名第2:得分为1/2=0.5
 - 如果点击项在推荐列表中排名第4:得分为1/4=0.25
 - 最终MRR为(0.5+0.25)/2=0.375
 
这种评估方式强调:
- 将用户真正感兴趣的项目排在推荐列表前列的重要性
 - 对排名靠前的错误惩罚更重
 
解决方案框架建议
1. 数据预处理关键点
- 会话分割:按session_id划分用户行为序列
 - 行为编码:将不同类型的action_type转化为可计算的特征
 - 时间特征提取:利用timestamp构建行为时间间隔等特征
 - 展示列表处理:解析impressions和prices字段
 
2. 特征工程方向
基础特征:
- 用户历史行为统计(点击率、筛选偏好等)
 - 酒店属性特征
 - 上下文特征(平台、设备、城市)
 
高级特征:
- 会话内行为序列模式
 - 价格敏感度分析
 - 筛选条件变化轨迹
 
3. 模型选择策略
- 
传统方法:协同过滤+会话上下文
 - 
深度学习方法:
- GRU/LSTM处理序列数据
 - Attention机制捕捉关键行为
 - 多任务学习联合优化
 
 - 
混合方法:结合传统推荐算法与深度学习模型
 
提交格式规范
提交文件必须包含以下字段:
user_id|session_id|timestamp|step|item_recommendations
其中item_recommendations为最多25个酒店ID的空间分隔列表,按推荐优先级排序。
典型会话案例分析
通过图示案例,我们可以看到一个完整会话包含的行为序列:
- 目的地搜索 → 2. 筛选条件设置 → 3. POI搜索 → 4. 酒店优惠查看 → 5. 点击行为 → 6. 特定酒店搜索 → 7. 酒店信息查看 → 8. 最终点击
 
这个案例展示了用户从宽泛搜索到逐步聚焦的典型行为模式,对推荐算法设计具有重要启示。
实现建议
- 基线模型:首先实现基于协同过滤的简单推荐
 - 增量优化:逐步加入上下文信息和序列特征
 - 评估验证:通过验证集持续监控MRR指标变化
 - 特征分析:识别对推荐效果影响最大的关键特征
 
通过系统性地解决这些问题,可以构建出高效的会话型酒店推荐系统,在竞赛中取得优异成绩。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447