Tianji项目v1.18.14版本发布:增强数据分析与AI集成能力
Tianji是一个专注于数据收集与分析的开源项目,它提供了强大的数据监控、调查问卷和洞察分析功能。该项目旨在帮助开发者和企业更好地理解用户行为、收集反馈,并通过数据驱动决策。
在最新发布的v1.18.14版本中,Tianji团队主要聚焦于提升数据分析能力和AI集成功能,为用户带来更智能、更高效的数据处理体验。
核心功能升级
1. 洞察分析功能增强
本次更新为Tianji的洞察分析模块带来了多项改进。新增的自定义日期选择器功能允许用户更灵活地设置分析时间范围,这对于需要特定时间段数据分析的业务场景尤为重要。
团队还优化了数据展示效果,新增了SearchLoadingView组件,显著提升了数据加载时的用户体验。同时,对图表渲染主区块的显示效果进行了改进,使数据可视化更加清晰直观。
2. AI任务自动化
v1.18.14版本引入了AI任务自动化功能,通过新增的daily-ai-trigger项目,系统可以自动触发每日AI分析任务。这一功能特别适用于需要定期分析调查问卷结果的场景,大大减轻了人工操作的负担。
项目还新增了AI路由的API接口,并更新了AI服务的schema定义,为开发者提供了更完善的AI集成方案。
3. 调查问卷支持
洞察分析模块现在全面支持调查问卷数据,这意味着用户可以直接在Tianji平台中分析问卷收集到的反馈数据。团队还修复了日期类型过滤器的操作问题,确保数据分析的准确性。
技术优化
在底层架构方面,开发团队对代码结构进行了优化,重新组织了与洞察分析相关的逻辑文件夹结构,提高了代码的可维护性。同时,监控数据的清理周期也得到了调整,确保系统始终保留至少一个月的数据,为长期趋势分析提供了保障。
国际化支持
新版本增加了国家/地区翻译功能,为国际化应用提供了更好的支持。这一改进使得Tianji可以更好地服务于全球用户,满足不同地区的数据分析需求。
总结
Tianji v1.18.14版本通过增强数据分析能力、引入AI自动化任务和优化用户体验,进一步巩固了其作为专业数据分析工具的地位。这些改进不仅提升了现有功能的表现,也为未来的功能扩展奠定了坚实基础。对于需要深入分析用户行为和反馈的团队来说,这一版本无疑提供了更加强大的工具支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00