Tianji项目v1.18.14版本发布:增强数据分析与AI集成能力
Tianji是一个专注于数据收集与分析的开源项目,它提供了强大的数据监控、调查问卷和洞察分析功能。该项目旨在帮助开发者和企业更好地理解用户行为、收集反馈,并通过数据驱动决策。
在最新发布的v1.18.14版本中,Tianji团队主要聚焦于提升数据分析能力和AI集成功能,为用户带来更智能、更高效的数据处理体验。
核心功能升级
1. 洞察分析功能增强
本次更新为Tianji的洞察分析模块带来了多项改进。新增的自定义日期选择器功能允许用户更灵活地设置分析时间范围,这对于需要特定时间段数据分析的业务场景尤为重要。
团队还优化了数据展示效果,新增了SearchLoadingView组件,显著提升了数据加载时的用户体验。同时,对图表渲染主区块的显示效果进行了改进,使数据可视化更加清晰直观。
2. AI任务自动化
v1.18.14版本引入了AI任务自动化功能,通过新增的daily-ai-trigger项目,系统可以自动触发每日AI分析任务。这一功能特别适用于需要定期分析调查问卷结果的场景,大大减轻了人工操作的负担。
项目还新增了AI路由的API接口,并更新了AI服务的schema定义,为开发者提供了更完善的AI集成方案。
3. 调查问卷支持
洞察分析模块现在全面支持调查问卷数据,这意味着用户可以直接在Tianji平台中分析问卷收集到的反馈数据。团队还修复了日期类型过滤器的操作问题,确保数据分析的准确性。
技术优化
在底层架构方面,开发团队对代码结构进行了优化,重新组织了与洞察分析相关的逻辑文件夹结构,提高了代码的可维护性。同时,监控数据的清理周期也得到了调整,确保系统始终保留至少一个月的数据,为长期趋势分析提供了保障。
国际化支持
新版本增加了国家/地区翻译功能,为国际化应用提供了更好的支持。这一改进使得Tianji可以更好地服务于全球用户,满足不同地区的数据分析需求。
总结
Tianji v1.18.14版本通过增强数据分析能力、引入AI自动化任务和优化用户体验,进一步巩固了其作为专业数据分析工具的地位。这些改进不仅提升了现有功能的表现,也为未来的功能扩展奠定了坚实基础。对于需要深入分析用户行为和反馈的团队来说,这一版本无疑提供了更加强大的工具支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00