Bolt.new项目与Ollama本地模型集成问题解析
问题现象
在使用Bolt.new项目(一个基于Remix框架构建的AI应用)时,用户遇到了Ollama本地模型列表为空的问题。具体表现为:
- 在Bolt.new的UI界面中无法看到任何Ollama本地模型
- 控制台报错显示"Error getting dynamic models Ollama: SyntaxError: Unexpected token p in JSON at position 4"
- 尝试设置base URL为127.0.0.1和localhost均无效
技术背景
Bolt.new是一个支持多种AI模型提供商的框架,其中包括Ollama(一个用于运行大型语言模型的本地服务)。当Bolt.new启动时,它会自动尝试从各个注册的提供商获取可用的模型列表。
问题根源分析
根据错误日志和用户反馈,可以判断问题出在以下几个方面:
-
JSON解析错误:错误信息显示在解析Ollama响应时遇到了意外的"p"字符,这表明Ollama服务返回的不是预期的JSON格式数据。
-
连接配置问题:虽然用户尝试了127.0.0.1和localhost两种地址,但可能没有正确配置端口或存在网络访问限制。
-
环境初始化顺序:用户最终通过重新安装Ollama并在启动Bolt.new前正确配置.env.local文件解决了问题,这表明环境变量的加载时机可能影响服务发现。
解决方案
经过实践验证,以下步骤可以解决该问题:
-
重新安装Ollama服务:确保Ollama本身运行正常,可以通过命令行测试
ollama list
命令是否能正确返回模型列表。 -
清理并重新获取Bolt.new项目:删除原有项目目录,重新克隆或下载最新版本。
-
预先配置环境变量:在启动服务前,确保.env.local文件中包含正确的Ollama配置,特别是:
- OLLAMA_API_KEY(即使设置为"NA")
- OLLAMA_BASE_URL(正确的服务地址和端口)
-
启动顺序:先启动Ollama服务,确认其正常运行后再启动Bolt.new。
技术细节
当Bolt.new启动时,LLMManager会执行以下关键操作:
- 注册所有支持的提供商(包括Ollama)
- 尝试从每个提供商获取动态模型列表
- 缓存获取到的模型信息
对于Ollama提供商,Bolt.new会向配置的base URL发送API请求获取模型列表。如果返回的数据格式不符合预期(如返回了错误页面而非JSON),就会导致上述解析错误。
最佳实践建议
-
环境隔离:为AI开发环境创建独立的虚拟环境或容器,避免依赖冲突。
-
配置验证:在启动主应用前,先用curl或Postman测试Ollama API端点是否可访问。
-
日志监控:密切关注启动日志,特别是LLMManager的初始化过程。
-
版本兼容性:确保Bolt.new和Ollama的版本兼容,必要时查阅版本更新说明。
总结
这类集成问题通常源于服务间通信配置不当或初始化顺序错误。通过系统性地检查各组件状态、验证网络连接、确保正确配置加载顺序,大多数情况下都能有效解决问题。对于AI应用开发而言,理解框架与服务提供商的交互机制是排查此类问题的关键。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









