FastEndpoints项目中JWT授权请求头问题的解决方案
问题背景
在FastEndpoints项目中,开发者经常会遇到JWT授权相关的配置问题。一个典型场景是当从Unity客户端发送请求时,可能会收到400 Bad Request错误,提示JSON反序列化失败。这种情况通常发生在从传统API迁移到FastEndpoints架构时,特别是当客户端保留了旧有的请求头配置时。
错误现象分析
当使用FastEndpoints配置JWT授权时,Swagger测试通常能正常工作,但Unity客户端请求会返回如下错误:
HTTP/1.1 400 Bad Request
{
"statusCode":400,
"message":"One or more errors occurred!",
"errors":{
"serializerErrors":[
"The input does not contain any JSON tokens. Expected the input to start with a valid JSON token when isFinalBlock is true. LineNumber: 0 | BytePositionInLine: 0."
]
}
}
这个错误表明系统尝试反序列化请求体时失败,因为请求中没有有效的JSON内容。
根本原因
经过分析,问题通常源于Unity客户端在GET请求中错误地包含了application/json
内容类型头。FastEndpoints默认使用System.Text.Json(STJ)进行序列化,当它检测到application/json
头时,会尝试解析请求体为JSON,而GET请求通常没有请求体,导致反序列化失败。
解决方案比较
方案一:修改客户端请求头
最直接的解决方案是修改Unity客户端,移除GET请求中的application/json
头。但这对已有大量用户使用的客户端来说可能不太实际。
方案二:改用Newtonsoft.Json
可以将序列化器切换为Newtonsoft.Json,它能更宽容地处理这种情况。但这种方法会带来性能损失,因为System.Text.Json在性能上优于Newtonsoft.Json。
// 在配置中添加
c.Serializer = new NewtonsoftJsonSerializer();
方案三:使用中间件修复请求头(推荐)
最佳实践是创建一个自定义中间件,在请求到达FastEndpoints前修复有问题的请求头:
var bld = WebApplication.CreateBuilder(args);
bld.Services
.SwaggerDocument()
.AddFastEndpoints();
var app = bld.Build();
app.UseMiddleware<JsonContentTypeFixerMiddleware>()
.UseFastEndpoints()
.UseSwaggerGen();
app.Run();
sealed class JsonContentTypeFixerMiddleware(RequestDelegate next)
{
public Task Invoke(HttpContext ctx)
{
if (ctx.Request.Method == "GET" &&
ctx.Request.Headers.TryGetValue(HeaderNames.ContentType, out var ct) &&
ct.Any(v => v?.Equals("application/json", StringComparison.OrdinalIgnoreCase) is true))
ctx.Request.Headers.Remove(HeaderNames.ContentType);
return next(ctx);
}
}
这个中间件会检查所有GET请求,如果发现包含application/json
内容类型头,则将其移除,从而避免后续的反序列化问题。
性能考量
System.Text.Json相比Newtonsoft.Json有显著的性能优势,特别是在高并发场景下。因此,推荐使用中间件方案而非切换序列化器,这样既能保持系统性能,又能兼容旧客户端。
最佳实践建议
- 对于新项目,建议统一客户端规范,避免在GET请求中发送内容类型头
- 对于迁移项目,使用中间件方案可以平滑过渡
- 在API文档中明确说明各端点预期的请求头配置
- 考虑在开发环境中添加请求日志,帮助识别类似问题
通过这种解决方案,开发者可以在保持FastEndpoints高性能优势的同时,兼容各种客户端实现,确保系统的稳定性和兼容性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









