FastEndpoints项目中JWT授权请求头问题的解决方案
问题背景
在FastEndpoints项目中,开发者经常会遇到JWT授权相关的配置问题。一个典型场景是当从Unity客户端发送请求时,可能会收到400 Bad Request错误,提示JSON反序列化失败。这种情况通常发生在从传统API迁移到FastEndpoints架构时,特别是当客户端保留了旧有的请求头配置时。
错误现象分析
当使用FastEndpoints配置JWT授权时,Swagger测试通常能正常工作,但Unity客户端请求会返回如下错误:
HTTP/1.1 400 Bad Request
{
"statusCode":400,
"message":"One or more errors occurred!",
"errors":{
"serializerErrors":[
"The input does not contain any JSON tokens. Expected the input to start with a valid JSON token when isFinalBlock is true. LineNumber: 0 | BytePositionInLine: 0."
]
}
}
这个错误表明系统尝试反序列化请求体时失败,因为请求中没有有效的JSON内容。
根本原因
经过分析,问题通常源于Unity客户端在GET请求中错误地包含了application/json内容类型头。FastEndpoints默认使用System.Text.Json(STJ)进行序列化,当它检测到application/json头时,会尝试解析请求体为JSON,而GET请求通常没有请求体,导致反序列化失败。
解决方案比较
方案一:修改客户端请求头
最直接的解决方案是修改Unity客户端,移除GET请求中的application/json头。但这对已有大量用户使用的客户端来说可能不太实际。
方案二:改用Newtonsoft.Json
可以将序列化器切换为Newtonsoft.Json,它能更宽容地处理这种情况。但这种方法会带来性能损失,因为System.Text.Json在性能上优于Newtonsoft.Json。
// 在配置中添加
c.Serializer = new NewtonsoftJsonSerializer();
方案三:使用中间件修复请求头(推荐)
最佳实践是创建一个自定义中间件,在请求到达FastEndpoints前修复有问题的请求头:
var bld = WebApplication.CreateBuilder(args);
bld.Services
.SwaggerDocument()
.AddFastEndpoints();
var app = bld.Build();
app.UseMiddleware<JsonContentTypeFixerMiddleware>()
.UseFastEndpoints()
.UseSwaggerGen();
app.Run();
sealed class JsonContentTypeFixerMiddleware(RequestDelegate next)
{
public Task Invoke(HttpContext ctx)
{
if (ctx.Request.Method == "GET" &&
ctx.Request.Headers.TryGetValue(HeaderNames.ContentType, out var ct) &&
ct.Any(v => v?.Equals("application/json", StringComparison.OrdinalIgnoreCase) is true))
ctx.Request.Headers.Remove(HeaderNames.ContentType);
return next(ctx);
}
}
这个中间件会检查所有GET请求,如果发现包含application/json内容类型头,则将其移除,从而避免后续的反序列化问题。
性能考量
System.Text.Json相比Newtonsoft.Json有显著的性能优势,特别是在高并发场景下。因此,推荐使用中间件方案而非切换序列化器,这样既能保持系统性能,又能兼容旧客户端。
最佳实践建议
- 对于新项目,建议统一客户端规范,避免在GET请求中发送内容类型头
- 对于迁移项目,使用中间件方案可以平滑过渡
- 在API文档中明确说明各端点预期的请求头配置
- 考虑在开发环境中添加请求日志,帮助识别类似问题
通过这种解决方案,开发者可以在保持FastEndpoints高性能优势的同时,兼容各种客户端实现,确保系统的稳定性和兼容性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00