FastEndpoints项目中JWT授权请求头问题的解决方案
问题背景
在FastEndpoints项目中,开发者经常会遇到JWT授权相关的配置问题。一个典型场景是当从Unity客户端发送请求时,可能会收到400 Bad Request错误,提示JSON反序列化失败。这种情况通常发生在从传统API迁移到FastEndpoints架构时,特别是当客户端保留了旧有的请求头配置时。
错误现象分析
当使用FastEndpoints配置JWT授权时,Swagger测试通常能正常工作,但Unity客户端请求会返回如下错误:
HTTP/1.1 400 Bad Request
{
"statusCode":400,
"message":"One or more errors occurred!",
"errors":{
"serializerErrors":[
"The input does not contain any JSON tokens. Expected the input to start with a valid JSON token when isFinalBlock is true. LineNumber: 0 | BytePositionInLine: 0."
]
}
}
这个错误表明系统尝试反序列化请求体时失败,因为请求中没有有效的JSON内容。
根本原因
经过分析,问题通常源于Unity客户端在GET请求中错误地包含了application/json内容类型头。FastEndpoints默认使用System.Text.Json(STJ)进行序列化,当它检测到application/json头时,会尝试解析请求体为JSON,而GET请求通常没有请求体,导致反序列化失败。
解决方案比较
方案一:修改客户端请求头
最直接的解决方案是修改Unity客户端,移除GET请求中的application/json头。但这对已有大量用户使用的客户端来说可能不太实际。
方案二:改用Newtonsoft.Json
可以将序列化器切换为Newtonsoft.Json,它能更宽容地处理这种情况。但这种方法会带来性能损失,因为System.Text.Json在性能上优于Newtonsoft.Json。
// 在配置中添加
c.Serializer = new NewtonsoftJsonSerializer();
方案三:使用中间件修复请求头(推荐)
最佳实践是创建一个自定义中间件,在请求到达FastEndpoints前修复有问题的请求头:
var bld = WebApplication.CreateBuilder(args);
bld.Services
.SwaggerDocument()
.AddFastEndpoints();
var app = bld.Build();
app.UseMiddleware<JsonContentTypeFixerMiddleware>()
.UseFastEndpoints()
.UseSwaggerGen();
app.Run();
sealed class JsonContentTypeFixerMiddleware(RequestDelegate next)
{
public Task Invoke(HttpContext ctx)
{
if (ctx.Request.Method == "GET" &&
ctx.Request.Headers.TryGetValue(HeaderNames.ContentType, out var ct) &&
ct.Any(v => v?.Equals("application/json", StringComparison.OrdinalIgnoreCase) is true))
ctx.Request.Headers.Remove(HeaderNames.ContentType);
return next(ctx);
}
}
这个中间件会检查所有GET请求,如果发现包含application/json内容类型头,则将其移除,从而避免后续的反序列化问题。
性能考量
System.Text.Json相比Newtonsoft.Json有显著的性能优势,特别是在高并发场景下。因此,推荐使用中间件方案而非切换序列化器,这样既能保持系统性能,又能兼容旧客户端。
最佳实践建议
- 对于新项目,建议统一客户端规范,避免在GET请求中发送内容类型头
- 对于迁移项目,使用中间件方案可以平滑过渡
- 在API文档中明确说明各端点预期的请求头配置
- 考虑在开发环境中添加请求日志,帮助识别类似问题
通过这种解决方案,开发者可以在保持FastEndpoints高性能优势的同时,兼容各种客户端实现,确保系统的稳定性和兼容性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00