Apache Sling Feature API Regions 模型项目教程
1. 项目的目录结构及介绍
Apache Sling Feature API Regions 模型项目的目录结构如下:
sling-org-apache-sling-feature-apiregions-model/
├── src/
│ ├── main/
│ │ ├── java/
│ │ │ └── org/
│ │ │ └── apache/
│ │ │ └── sling/
│ │ │ └── feature/
│ │ │ └── apiregions/
│ │ │ └── model/
│ │ │ ├── ApiRegion.java
│ │ │ ├── ApiRegions.java
│ │ │ └── io/
│ │ │ ├── ApiRegionsJSONParser.java
│ │ │ └── ApiRegionsJSONSerializer.java
│ │ └── resources/
│ │ └── META-INF/
│ │ └── services/
│ │ └── org.apache.sling.feature.apiregions.model.ApiRegions
│ └── test/
│ └── java/
│ └── org/
│ └── apache/
│ └── sling/
│ └── feature/
│ └── apiregions/
│ └── model/
│ └── io/
│ └── ApiRegionsJSONParserTest.java
├── README.md
├── LICENSE
├── CODE_OF_CONDUCT.md
├── SECURITY.md
└── pom.xml
目录结构介绍
-
src/main/java/org/apache/sling/feature/apiregions/model/:包含项目的主要Java源代码文件。ApiRegion.java:定义API区域的类。ApiRegions.java:定义API区域的集合类。io/:包含与输入输出相关的类。ApiRegionsJSONParser.java:用于解析API区域的JSON解析器。ApiRegionsJSONSerializer.java:用于序列化API区域的JSON序列化器。
-
src/main/resources/META-INF/services/:包含服务配置文件。org.apache.sling.feature.apiregions.model.ApiRegions:服务配置文件。
-
src/test/java/org/apache/sling/feature/apiregions/model/io/:包含测试类。ApiRegionsJSONParserTest.java:测试JSON解析器的类。
-
README.md:项目说明文档。 -
LICENSE:项目许可证文件。 -
CODE_OF_CONDUCT.md:行为准则文件。 -
SECURITY.md:安全策略文件。 -
pom.xml:Maven项目配置文件。
2. 项目的启动文件介绍
项目的启动文件主要是通过Maven构建和运行。以下是启动项目的基本步骤:
-
克隆项目仓库:
git clone https://github.com/apache/sling-org-apache-sling-feature-apiregions-model.git -
构建项目:
cd sling-org-apache-sling-feature-apiregions-model mvn clean install -
运行项目: 项目的主要运行逻辑在
ApiRegionsJSONParser和ApiRegionsJSONSerializer类中。可以通过编写测试类或示例代码来运行和验证这些类。
3. 项目的配置文件介绍
项目的配置文件主要包括以下几个部分:
-
pom.xml:Maven项目配置文件,定义了项目的依赖、构建和打包配置。 -
src/main/resources/META-INF/services/org.apache.sling.feature.apiregions.model.ApiRegions:服务配置文件,定义了API区域的服务配置。 -
README.md:项目说明文档,包含项目的介绍、使用方法和示例。 -
LICENSE:项目许可证文件,定义了项目的开源许可证。 -
CODE_OF_CONDUCT.md:行为准则文件,定义了项目社区的行为准则。 -
SECURITY.md:安全策略文件,定义了项目的安全策略和报告机制。
通过
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00