Apache Sling Feature API Regions 模型项目教程
1. 项目的目录结构及介绍
Apache Sling Feature API Regions 模型项目的目录结构如下:
sling-org-apache-sling-feature-apiregions-model/
├── src/
│ ├── main/
│ │ ├── java/
│ │ │ └── org/
│ │ │ └── apache/
│ │ │ └── sling/
│ │ │ └── feature/
│ │ │ └── apiregions/
│ │ │ └── model/
│ │ │ ├── ApiRegion.java
│ │ │ ├── ApiRegions.java
│ │ │ └── io/
│ │ │ ├── ApiRegionsJSONParser.java
│ │ │ └── ApiRegionsJSONSerializer.java
│ │ └── resources/
│ │ └── META-INF/
│ │ └── services/
│ │ └── org.apache.sling.feature.apiregions.model.ApiRegions
│ └── test/
│ └── java/
│ └── org/
│ └── apache/
│ └── sling/
│ └── feature/
│ └── apiregions/
│ └── model/
│ └── io/
│ └── ApiRegionsJSONParserTest.java
├── README.md
├── LICENSE
├── CODE_OF_CONDUCT.md
├── SECURITY.md
└── pom.xml
目录结构介绍
-
src/main/java/org/apache/sling/feature/apiregions/model/:包含项目的主要Java源代码文件。ApiRegion.java:定义API区域的类。ApiRegions.java:定义API区域的集合类。io/:包含与输入输出相关的类。ApiRegionsJSONParser.java:用于解析API区域的JSON解析器。ApiRegionsJSONSerializer.java:用于序列化API区域的JSON序列化器。
-
src/main/resources/META-INF/services/:包含服务配置文件。org.apache.sling.feature.apiregions.model.ApiRegions:服务配置文件。
-
src/test/java/org/apache/sling/feature/apiregions/model/io/:包含测试类。ApiRegionsJSONParserTest.java:测试JSON解析器的类。
-
README.md:项目说明文档。 -
LICENSE:项目许可证文件。 -
CODE_OF_CONDUCT.md:行为准则文件。 -
SECURITY.md:安全策略文件。 -
pom.xml:Maven项目配置文件。
2. 项目的启动文件介绍
项目的启动文件主要是通过Maven构建和运行。以下是启动项目的基本步骤:
-
克隆项目仓库:
git clone https://github.com/apache/sling-org-apache-sling-feature-apiregions-model.git -
构建项目:
cd sling-org-apache-sling-feature-apiregions-model mvn clean install -
运行项目: 项目的主要运行逻辑在
ApiRegionsJSONParser和ApiRegionsJSONSerializer类中。可以通过编写测试类或示例代码来运行和验证这些类。
3. 项目的配置文件介绍
项目的配置文件主要包括以下几个部分:
-
pom.xml:Maven项目配置文件,定义了项目的依赖、构建和打包配置。 -
src/main/resources/META-INF/services/org.apache.sling.feature.apiregions.model.ApiRegions:服务配置文件,定义了API区域的服务配置。 -
README.md:项目说明文档,包含项目的介绍、使用方法和示例。 -
LICENSE:项目许可证文件,定义了项目的开源许可证。 -
CODE_OF_CONDUCT.md:行为准则文件,定义了项目社区的行为准则。 -
SECURITY.md:安全策略文件,定义了项目的安全策略和报告机制。
通过
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00