Apache Sling Feature API Regions 模型项目教程
1. 项目的目录结构及介绍
Apache Sling Feature API Regions 模型项目的目录结构如下:
sling-org-apache-sling-feature-apiregions-model/
├── src/
│ ├── main/
│ │ ├── java/
│ │ │ └── org/
│ │ │ └── apache/
│ │ │ └── sling/
│ │ │ └── feature/
│ │ │ └── apiregions/
│ │ │ └── model/
│ │ │ ├── ApiRegion.java
│ │ │ ├── ApiRegions.java
│ │ │ └── io/
│ │ │ ├── ApiRegionsJSONParser.java
│ │ │ └── ApiRegionsJSONSerializer.java
│ │ └── resources/
│ │ └── META-INF/
│ │ └── services/
│ │ └── org.apache.sling.feature.apiregions.model.ApiRegions
│ └── test/
│ └── java/
│ └── org/
│ └── apache/
│ └── sling/
│ └── feature/
│ └── apiregions/
│ └── model/
│ └── io/
│ └── ApiRegionsJSONParserTest.java
├── README.md
├── LICENSE
├── CODE_OF_CONDUCT.md
├── SECURITY.md
└── pom.xml
目录结构介绍
-
src/main/java/org/apache/sling/feature/apiregions/model/:包含项目的主要Java源代码文件。ApiRegion.java:定义API区域的类。ApiRegions.java:定义API区域的集合类。io/:包含与输入输出相关的类。ApiRegionsJSONParser.java:用于解析API区域的JSON解析器。ApiRegionsJSONSerializer.java:用于序列化API区域的JSON序列化器。
-
src/main/resources/META-INF/services/:包含服务配置文件。org.apache.sling.feature.apiregions.model.ApiRegions:服务配置文件。
-
src/test/java/org/apache/sling/feature/apiregions/model/io/:包含测试类。ApiRegionsJSONParserTest.java:测试JSON解析器的类。
-
README.md:项目说明文档。 -
LICENSE:项目许可证文件。 -
CODE_OF_CONDUCT.md:行为准则文件。 -
SECURITY.md:安全策略文件。 -
pom.xml:Maven项目配置文件。
2. 项目的启动文件介绍
项目的启动文件主要是通过Maven构建和运行。以下是启动项目的基本步骤:
-
克隆项目仓库:
git clone https://github.com/apache/sling-org-apache-sling-feature-apiregions-model.git -
构建项目:
cd sling-org-apache-sling-feature-apiregions-model mvn clean install -
运行项目: 项目的主要运行逻辑在
ApiRegionsJSONParser和ApiRegionsJSONSerializer类中。可以通过编写测试类或示例代码来运行和验证这些类。
3. 项目的配置文件介绍
项目的配置文件主要包括以下几个部分:
-
pom.xml:Maven项目配置文件,定义了项目的依赖、构建和打包配置。 -
src/main/resources/META-INF/services/org.apache.sling.feature.apiregions.model.ApiRegions:服务配置文件,定义了API区域的服务配置。 -
README.md:项目说明文档,包含项目的介绍、使用方法和示例。 -
LICENSE:项目许可证文件,定义了项目的开源许可证。 -
CODE_OF_CONDUCT.md:行为准则文件,定义了项目社区的行为准则。 -
SECURITY.md:安全策略文件,定义了项目的安全策略和报告机制。
通过
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00