首页
/ AIHawk自动求职代理项目重构:解决上帝类与设计模式优化

AIHawk自动求职代理项目重构:解决上帝类与设计模式优化

2025-05-06 17:31:17作者:尤峻淳Whitney

项目背景

AIHawk自动求职代理是一个基于人工智能的自动化求职申请系统,通过整合Selenium、LLM等技术实现LinkedIn等平台的职位自动申请功能。随着项目规模扩大,代码库中出现了典型的"上帝类"问题,导致维护和扩展困难。

当前架构问题分析

项目中存在两个典型的上帝类:

  1. AIHawkEasyApplier:负责LinkedIn简易申请流程
  2. AIHawkJobManager:管理整个求职流程

这些类承担了过多职责,导致:

  • 代码耦合度高,修改一处可能影响多处功能
  • 测试覆盖率难以提升
  • 新功能开发效率低下
  • 代码可读性差,新人上手困难

重构方案设计

1. 设计模式优化

页面对象模型(POM)

将每个LinkedIn页面抽象为独立类,封装页面元素和操作:

  • 登录页面
  • 职位搜索页面
  • 职位详情页面
  • 简易申请上传页面
  • 申请问题页面
  • 申请审核页面

优势:页面结构变更只需修改对应类,不影响其他功能。

服务层模式

创建专门的服务类处理核心业务逻辑:

  • 求职申请服务:协调页面对象完成申请流程
  • Selenium驱动服务:封装浏览器操作

仓储模式

抽象数据访问层,隔离业务逻辑与数据存储细节:

  • 职位仓储:管理职位数据存取
  • 配置仓储:处理配置文件读写

LLM模型抽象

定义基础LLM接口,各厂商实现独立类:

  • OpenAI实现
  • Ollama实现
  • Perplexity实现

2. 目录结构重构

src/
├── models/        # LLM模型实现
├── pages/        # 页面对象
├── services/     # 业务服务
├── repositories/ # 数据访问
└── utils/        # 工具类

3. 重构实施策略

  1. 测试先行:确保现有功能测试覆盖
  2. 渐进式重构:从耦合度低的模块开始
  3. 功能冻结:重构期间暂停新特性开发
  4. 文档更新:同步更新架构设计文档
  5. CI/CD增强:完善自动化测试流程

技术挑战与解决方案

  1. Selenium操作封装

    • 将浏览器操作抽象为独立服务
    • 实现页面等待、元素定位等通用方法
  2. LLM调用解耦

    • 定义统一接口规范
    • 各厂商SDK独立实现
    • 支持运行时动态切换
  3. 状态管理

    • 应用状态集中管理
    • 避免状态分散在各页面
  4. 异常处理

    • 统一异常分类
    • 实现错误恢复机制

预期收益

  1. 可维护性提升

    • 单一职责原则落实
    • 类规模缩小50%以上
    • 修改影响范围可控
  2. 可测试性增强

    • 单元测试覆盖率提升至80%+
    • 模块间mock更容易
  3. 扩展性优化

    • 新平台支持开发周期缩短
    • 新LLM接入时间减少70%
  4. 协作效率提高

    • 代码可读性改善
    • 并行开发冲突减少

实施建议

  1. 建立架构决策记录(ADR)
  2. 制定代码风格指南
  3. 引入架构守护工具
  4. 定期进行代码评审
  5. 监控重构后性能指标

通过系统性的架构重构,AIHawk项目将获得更健康的技术基础,为后续功能扩展和性能优化奠定坚实基础。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133