AIHawk自动求职代理项目重构:解决上帝类与设计模式优化
2025-05-06 17:31:17作者:尤峻淳Whitney
项目背景
AIHawk自动求职代理是一个基于人工智能的自动化求职申请系统,通过整合Selenium、LLM等技术实现LinkedIn等平台的职位自动申请功能。随着项目规模扩大,代码库中出现了典型的"上帝类"问题,导致维护和扩展困难。
当前架构问题分析
项目中存在两个典型的上帝类:
- AIHawkEasyApplier:负责LinkedIn简易申请流程
- AIHawkJobManager:管理整个求职流程
这些类承担了过多职责,导致:
- 代码耦合度高,修改一处可能影响多处功能
- 测试覆盖率难以提升
- 新功能开发效率低下
- 代码可读性差,新人上手困难
重构方案设计
1. 设计模式优化
页面对象模型(POM)
将每个LinkedIn页面抽象为独立类,封装页面元素和操作:
- 登录页面
- 职位搜索页面
- 职位详情页面
- 简易申请上传页面
- 申请问题页面
- 申请审核页面
优势:页面结构变更只需修改对应类,不影响其他功能。
服务层模式
创建专门的服务类处理核心业务逻辑:
- 求职申请服务:协调页面对象完成申请流程
- Selenium驱动服务:封装浏览器操作
仓储模式
抽象数据访问层,隔离业务逻辑与数据存储细节:
- 职位仓储:管理职位数据存取
- 配置仓储:处理配置文件读写
LLM模型抽象
定义基础LLM接口,各厂商实现独立类:
- OpenAI实现
- Ollama实现
- Perplexity实现
2. 目录结构重构
src/
├── models/ # LLM模型实现
├── pages/ # 页面对象
├── services/ # 业务服务
├── repositories/ # 数据访问
└── utils/ # 工具类
3. 重构实施策略
- 测试先行:确保现有功能测试覆盖
- 渐进式重构:从耦合度低的模块开始
- 功能冻结:重构期间暂停新特性开发
- 文档更新:同步更新架构设计文档
- CI/CD增强:完善自动化测试流程
技术挑战与解决方案
-
Selenium操作封装:
- 将浏览器操作抽象为独立服务
- 实现页面等待、元素定位等通用方法
-
LLM调用解耦:
- 定义统一接口规范
- 各厂商SDK独立实现
- 支持运行时动态切换
-
状态管理:
- 应用状态集中管理
- 避免状态分散在各页面
-
异常处理:
- 统一异常分类
- 实现错误恢复机制
预期收益
-
可维护性提升:
- 单一职责原则落实
- 类规模缩小50%以上
- 修改影响范围可控
-
可测试性增强:
- 单元测试覆盖率提升至80%+
- 模块间mock更容易
-
扩展性优化:
- 新平台支持开发周期缩短
- 新LLM接入时间减少70%
-
协作效率提高:
- 代码可读性改善
- 并行开发冲突减少
实施建议
- 建立架构决策记录(ADR)
- 制定代码风格指南
- 引入架构守护工具
- 定期进行代码评审
- 监控重构后性能指标
通过系统性的架构重构,AIHawk项目将获得更健康的技术基础,为后续功能扩展和性能优化奠定坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.55 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
170
12
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.85 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70