LangChain-Ollama 0.3.0版本发布:结构化输出与推理内容解析能力升级
LangChain是一个用于构建基于语言模型应用的开源框架,而LangChain-Ollama则是其与Ollama模型服务集成的专用组件。Ollama是一个本地运行大型语言模型的工具,支持多种开源模型。最新发布的LangChain-Ollama 0.3.0版本带来了两项重要改进:结构化输出方法的优化和Deepseek模型推理内容解析的支持。
结构化输出方法的重大改进
在0.3.0版本中,with_structured_output方法的默认实现方式发生了重要变化。这个功能允许开发者从语言模型获取结构化数据输出,而非传统的非结构化文本。
新版本默认采用了Ollama专门设计的结构化输出特性(对应method="json_schema"参数)。这种方式直接利用Ollama模型内置的结构化输出能力,相比之前版本使用的工具调用(tool-calling)方法,具有更高的效率和可靠性。
对于需要保持旧版行为的用户,可以通过显式指定method="function_calling"来恢复之前的工具调用实现方式:
llm = ChatOllama(model="...").with_structured_output(
schema, method="function_calling"
)
这一改变反映了LangChain团队对Ollama最新特性的快速适配,同时也为开发者提供了更灵活的选择空间。
Deepseek模型推理内容解析支持
0.3.0版本新增了对Deepseek模型推理内容的解析能力。Deepseek模型在生成回答时会产生特殊的推理标记(如<think>...</think>),这些内容包含了模型思考过程的关键信息。
通过设置extract_reasoning=True参数,开发者可以轻松获取这些有价值的中间推理过程:
llm = ChatOllama(model="deepseek-r1:1.5b", extract_reasoning=True)
result = llm.invoke("What is 3^3?")
# 获取常规回答内容
result.content
# 获取模型推理过程
result.additional_kwargs["reasoning_content"]
这一特性对于需要理解模型决策过程、进行教学演示或调试复杂问题的场景特别有用,为开发者提供了更深入的模型行为洞察。
其他改进与优化
除了上述两项主要特性外,0.3.0版本还包含多项改进:
- 字符串值解析优化:修复了工具调用中参数解析的问题,提高了结构化数据处理的准确性。
- 嵌入模型支持keep_alive参数:增强了长时间会话场景下的性能表现。
- 结构化输出的追踪功能改进:提升了开发调试体验。
- 基础消息文本处理优化:增强了消息处理的鲁棒性。
- 构建系统升级:项目内部构建工具迁移到uv,提高了开发效率。
这些改进共同提升了LangChain-Ollama组件的稳定性、性能和开发体验,使其成为构建基于Ollama模型应用更强大的工具。
对于正在使用LangChain框架与Ollama模型服务的开发者,0.3.0版本提供了更高效、更灵活的结构化数据处理方式,以及更深入的模型行为分析能力,值得考虑升级。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00