Align-Anything项目中Janus模型的文本-图像到文本任务训练解析
在PKU-Alignment/align-anything项目中,Janus模型作为一个多模态模型,其训练过程涉及多种任务类型。本文将重点解析文本-图像到文本任务的训练实现细节,特别是关于预处理和填充策略的技术考量。
预处理流程的差异
Janus模型针对不同任务采用了差异化的预处理流程。值得注意的是,文本到图像(text-to-image)任务需要专门的预标记化(pre-tokenize)脚本,而文本-图像到文本(text-image-to-text)任务则可以直接使用提供的DPO/SFT脚本运行。这种差异源于模型对不同模态输入输出的处理方式不同。
文本到图像任务需要预标记化是因为图像生成过程涉及复杂的潜在空间转换,而文本-图像到文本任务则可以直接利用模型现有的文本处理能力,无需额外的预处理步骤。
填充策略的设计原理
Janus模型针对不同任务采用了不同的填充策略,这一设计具有深刻的技术考量:
-
生成任务使用左填充(left-padding):在语言模型生成阶段(无论生成何种模态),采用左填充策略。这是因为语言模型没有被训练在填充标记后产生有意义的输出,左填充可以确保生成质量。
-
监督训练使用右填充(right-padding):在SFT(监督微调)和DPO(直接偏好优化)训练过程中,采用右填充策略。这种设计可以防止模型在训练过程中看到填充标记,从而最大化训练效果。
-
PPO训练的特殊处理:在PPO(近端策略优化)训练中,由于其生成性质,会重新采用左填充策略。
这种填充策略的设计并非Janus模型特有,而是被多个训练代码库广泛采用的通用实践。实验表明,在监督训练中使用右填充通常能获得比左填充更好的效果。
实际应用建议
对于希望基于Janus模型进行文本-图像到文本任务开发的用户,建议:
- 直接使用项目提供的DPO/SFT脚本进行训练,无需额外预处理
- 保持默认的填充策略设置,除非有特殊需求
- 对于生成任务,确保使用左填充以获得最佳生成效果
- 在监督训练中坚持使用右填充策略
理解这些设计背后的原理,有助于开发者更好地利用Janus模型进行多模态任务开发,也能在需要自定义训练流程时做出更合理的技术决策。
通过这种精心设计的预处理和填充策略,Janus模型能够在保持高性能的同时,为开发者提供灵活的多模态任务支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00