RiverPod 2.6.1 中实现数据定时缓存的实践指南
前言
在现代移动应用开发中,数据缓存是提升用户体验和性能的重要手段。RiverPod 作为 Flutter 生态中流行的状态管理工具,提供了灵活的缓存机制。本文将深入探讨如何在 RiverPod 2.6.1 版本中实现数据定时缓存的功能。
基础缓存实现
RiverPod 提供了 AutoDisposeRef 的扩展机制来实现缓存功能。最基本的缓存实现方式如下:
extension CacheForExtension on AutoDisposeRef<Object?> {
void cacheFor(Duration duration) {
final link = keepAlive();
Timer(duration, link.close);
}
}
使用时只需在 provider 中调用:
@riverpod
Future<Object> example(ExampleRef ref) async {
ref.cacheFor(const Duration(minutes: 5));
return http.get(Uri.https('example.com'));
}
问题与优化
上述基础实现存在两个明显问题:
-
错误状态也会被缓存:当请求失败时,错误结果同样会被缓存,这显然不是我们期望的行为。
-
仅读取时不缓存:当只使用
ref.read而不使用ref.watch时,缓存机制不会生效。
改进方案
针对这些问题,我们可以改进缓存扩展:
extension CacheForExtension on AutoDisposeRef<Object?> {
void cacheFor(Duration duration, {bool disposeOnError = true}) {
final link = keepAlive();
Timer(duration, link.close);
if (disposeOnError) {
listenSelf(
(previous, next) {
if (next is AsyncValue && next.hasError) {
invalidateSelf();
}
},
onError: (error, stackTrace) {
invalidateSelf();
},
);
}
}
}
这个改进版本:
- 增加了错误处理机制
- 在发生错误时自动失效缓存
- 提供了
disposeOnError参数控制是否在错误时失效
RiverPod 2.6.1 的适配
在 RiverPod 2.6.1 中,ref.listenSelf 已被标记为废弃。我们需要采用新的方式来实现相同的功能。推荐的方法是使用 AsyncNotifier:
-
将 provider 转换为基于类的
AsyncNotifier -
修改扩展以适用于
AsyncNotifier -
调整扩展实现使用新的 API
对于使用 riverpod_gen 生成代码的情况,需要注意生成的类可能继承自 BuildlessAutoDisposeAsyncNotifier,这是一个内部类。更合适的做法可能是让生成的代码继承 AutoDisposeAsyncNotifier。
最佳实践建议
-
合理设置缓存时间:根据数据更新频率设置合适的缓存时间,平衡新鲜度和性能。
-
错误处理:确保错误状态不会被缓存,避免用户看到过时的错误信息。
-
资源释放:使用 Timer 时要确保在适当的时候取消,避免内存泄漏。
-
测试验证:编写单元测试验证缓存行为是否符合预期。
总结
在 RiverPod 2.6.1 中实现数据定时缓存需要考虑版本特性和最佳实践。通过合理使用 AsyncNotifier 和扩展机制,我们可以构建出健壮、高效的缓存解决方案。开发者应根据具体业务需求调整缓存策略,并在性能和用户体验之间找到平衡点。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00