RiverPod 2.6.1 中实现数据定时缓存的实践指南
前言
在现代移动应用开发中,数据缓存是提升用户体验和性能的重要手段。RiverPod 作为 Flutter 生态中流行的状态管理工具,提供了灵活的缓存机制。本文将深入探讨如何在 RiverPod 2.6.1 版本中实现数据定时缓存的功能。
基础缓存实现
RiverPod 提供了 AutoDisposeRef 的扩展机制来实现缓存功能。最基本的缓存实现方式如下:
extension CacheForExtension on AutoDisposeRef<Object?> {
void cacheFor(Duration duration) {
final link = keepAlive();
Timer(duration, link.close);
}
}
使用时只需在 provider 中调用:
@riverpod
Future<Object> example(ExampleRef ref) async {
ref.cacheFor(const Duration(minutes: 5));
return http.get(Uri.https('example.com'));
}
问题与优化
上述基础实现存在两个明显问题:
-
错误状态也会被缓存:当请求失败时,错误结果同样会被缓存,这显然不是我们期望的行为。
-
仅读取时不缓存:当只使用
ref.read而不使用ref.watch时,缓存机制不会生效。
改进方案
针对这些问题,我们可以改进缓存扩展:
extension CacheForExtension on AutoDisposeRef<Object?> {
void cacheFor(Duration duration, {bool disposeOnError = true}) {
final link = keepAlive();
Timer(duration, link.close);
if (disposeOnError) {
listenSelf(
(previous, next) {
if (next is AsyncValue && next.hasError) {
invalidateSelf();
}
},
onError: (error, stackTrace) {
invalidateSelf();
},
);
}
}
}
这个改进版本:
- 增加了错误处理机制
- 在发生错误时自动失效缓存
- 提供了
disposeOnError参数控制是否在错误时失效
RiverPod 2.6.1 的适配
在 RiverPod 2.6.1 中,ref.listenSelf 已被标记为废弃。我们需要采用新的方式来实现相同的功能。推荐的方法是使用 AsyncNotifier:
-
将 provider 转换为基于类的
AsyncNotifier -
修改扩展以适用于
AsyncNotifier -
调整扩展实现使用新的 API
对于使用 riverpod_gen 生成代码的情况,需要注意生成的类可能继承自 BuildlessAutoDisposeAsyncNotifier,这是一个内部类。更合适的做法可能是让生成的代码继承 AutoDisposeAsyncNotifier。
最佳实践建议
-
合理设置缓存时间:根据数据更新频率设置合适的缓存时间,平衡新鲜度和性能。
-
错误处理:确保错误状态不会被缓存,避免用户看到过时的错误信息。
-
资源释放:使用 Timer 时要确保在适当的时候取消,避免内存泄漏。
-
测试验证:编写单元测试验证缓存行为是否符合预期。
总结
在 RiverPod 2.6.1 中实现数据定时缓存需要考虑版本特性和最佳实践。通过合理使用 AsyncNotifier 和扩展机制,我们可以构建出健壮、高效的缓存解决方案。开发者应根据具体业务需求调整缓存策略,并在性能和用户体验之间找到平衡点。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-Thinking暂无简介Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00