LLM项目中的Python API设计:工具调用与调试钩子实现
2025-05-30 11:28:48作者:瞿蔚英Wynne
引言
在大型语言模型(LLM)应用开发中,如何优雅地处理工具调用(tool calls)是一个关键设计问题。LLM项目通过Python API提供了灵活的工具调用机制,同时支持调试钩子(hooks)功能,使开发者能够精细控制工具执行流程。
工具调用基础实现
LLM项目最初采用了一种链式调用设计,通过model.chain()
方法处理工具调用:
for token in model.chain("rs in strawberry", tools=[count_char_in_text]):
print(token, sep="", flush=True)
这种设计使用ChainResponse
类来迭代处理所有响应令牌,并在过程中执行工具调用以触发后续响应。虽然这种设计能够工作,但在调试和控制方面存在局限性。
改进后的工具执行API
经过重新设计,项目引入了更清晰的工具执行API:
response = model.prompt("reverse panda", tools=[reverse_string])
tool_results = response.execute_tool_calls()
这种设计将工具调用分离为一个显式操作,使流程更加透明可控。execute_tool_calls()
方法返回工具执行结果序列,开发者可以自由决定如何处理这些结果。
调试钩子机制
为了增强调试能力,API提供了两个关键钩子:
before_call
: 在工具执行前触发after_call
: 在工具执行后触发
response.execute_tool_calls(
before_call=lambda *args: pprint(args),
after_call=lambda *args: pprint(args)
)
before_call
接收工具定义和工具调用参数,可以用于检查或取消特定调用;after_call
则额外接收工具执行结果,适合用于日志记录或结果验证。
钩子参数详解
before_call
钩子接收两个参数:
Tool
对象:包含工具名称、描述、输入模式和执行函数ToolCall
对象:包含具体调用参数和唯一调用ID
after_call
钩子在前两个参数基础上增加:
ToolResult
对象:包含工具名称、输出结果和对应调用ID
取消工具调用机制
通过在before_call
钩子中抛出CancelToolCall
异常,开发者可以中断特定工具调用:
def before_call(tool, tool_call):
if "evil" in repr(tool_call.arguments):
raise llm.CancelToolCall("evil")
API设计演进
项目逐步淘汰了早期的.details()
方法和**options
参数设计,转向更明确的options={...}
字典参数风格。这种演进使API更加类型安全和自文档化。
实际应用示例
以下完整示例展示了工具调用API的实际应用:
import llm
from rich.pretty import pprint
def reverse_string(s):
return s[::-1]
model = llm.get_model("gpt-4.1-mini")
response = model.prompt("reverse panda", tools=[reverse_string])
tool_results = response.execute_tool_calls(
before_call=lambda *args: pprint(args),
after_call=lambda *args: pprint(args)
)
执行结果将详细显示工具调用前后的完整信息流,极大方便了调试过程。
总结
LLM项目的工具调用API设计体现了几个关键原则:
- 显式优于隐式:将工具调用作为显式操作
- 可观测性:通过钩子提供完整执行信息
- 可控性:允许中断特定调用
- 渐进式设计:不断优化API体验
这种设计既满足了基本功能需求,又为复杂场景提供了足够的灵活性和控制能力,是LLM应用开发中的优秀实践。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0230PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。01- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
132
1.89 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
273

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
70
63

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
379
389

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.24 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
915
548

openGauss kernel ~ openGauss is an open source relational database management system
C++
144
189

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15