LLM项目中的Python API设计:工具调用与调试钩子实现
2025-05-30 02:42:53作者:瞿蔚英Wynne
引言
在大型语言模型(LLM)应用开发中,如何优雅地处理工具调用(tool calls)是一个关键设计问题。LLM项目通过Python API提供了灵活的工具调用机制,同时支持调试钩子(hooks)功能,使开发者能够精细控制工具执行流程。
工具调用基础实现
LLM项目最初采用了一种链式调用设计,通过model.chain()方法处理工具调用:
for token in model.chain("rs in strawberry", tools=[count_char_in_text]):
print(token, sep="", flush=True)
这种设计使用ChainResponse类来迭代处理所有响应令牌,并在过程中执行工具调用以触发后续响应。虽然这种设计能够工作,但在调试和控制方面存在局限性。
改进后的工具执行API
经过重新设计,项目引入了更清晰的工具执行API:
response = model.prompt("reverse panda", tools=[reverse_string])
tool_results = response.execute_tool_calls()
这种设计将工具调用分离为一个显式操作,使流程更加透明可控。execute_tool_calls()方法返回工具执行结果序列,开发者可以自由决定如何处理这些结果。
调试钩子机制
为了增强调试能力,API提供了两个关键钩子:
before_call: 在工具执行前触发after_call: 在工具执行后触发
response.execute_tool_calls(
before_call=lambda *args: pprint(args),
after_call=lambda *args: pprint(args)
)
before_call接收工具定义和工具调用参数,可以用于检查或取消特定调用;after_call则额外接收工具执行结果,适合用于日志记录或结果验证。
钩子参数详解
before_call钩子接收两个参数:
Tool对象:包含工具名称、描述、输入模式和执行函数ToolCall对象:包含具体调用参数和唯一调用ID
after_call钩子在前两个参数基础上增加:
ToolResult对象:包含工具名称、输出结果和对应调用ID
取消工具调用机制
通过在before_call钩子中抛出CancelToolCall异常,开发者可以中断特定工具调用:
def before_call(tool, tool_call):
if "evil" in repr(tool_call.arguments):
raise llm.CancelToolCall("evil")
API设计演进
项目逐步淘汰了早期的.details()方法和**options参数设计,转向更明确的options={...}字典参数风格。这种演进使API更加类型安全和自文档化。
实际应用示例
以下完整示例展示了工具调用API的实际应用:
import llm
from rich.pretty import pprint
def reverse_string(s):
return s[::-1]
model = llm.get_model("gpt-4.1-mini")
response = model.prompt("reverse panda", tools=[reverse_string])
tool_results = response.execute_tool_calls(
before_call=lambda *args: pprint(args),
after_call=lambda *args: pprint(args)
)
执行结果将详细显示工具调用前后的完整信息流,极大方便了调试过程。
总结
LLM项目的工具调用API设计体现了几个关键原则:
- 显式优于隐式:将工具调用作为显式操作
- 可观测性:通过钩子提供完整执行信息
- 可控性:允许中断特定调用
- 渐进式设计:不断优化API体验
这种设计既满足了基本功能需求,又为复杂场景提供了足够的灵活性和控制能力,是LLM应用开发中的优秀实践。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355