Oppia项目中端到端测试失败视频记录方案设计与实现
2025-06-04 02:41:43作者:秋阔奎Evelyn
背景介绍
在Oppia项目的自动化测试实践中,端到端(e2e)测试和验收测试(acceptance test)的稳定性一直是个挑战。当测试失败时,开发团队往往需要更多的上下文信息来诊断问题,而传统的日志和截图有时不足以完全重现问题场景。
现有问题分析
当前Oppia项目测试框架存在两个主要痛点:
- 诊断信息不足:测试失败时仅能提供静态截图和日志,缺乏操作过程的动态记录
- 稳定性问题:默认开启视频录制会导致测试不稳定,增加flake(非确定性失败)的发生率
解决方案设计
整体架构
我们采用两阶段执行策略:
- 首次执行:不录制视频,仅收集基本失败信息
- 二次执行:当首次执行失败时,自动重试并录制视频
关键技术实现
视频录制模块
基于Puppeteer生态,我们选择puppeteer-screen-recorder库实现视频录制功能。该库的优势在于:
- 轻量级集成
- 支持多浏览器标签页同时录制
- 可配置视频质量参数
录制功能被集成到BaseUser基类中,通过重写openBrowser()和closeBrowser()方法实现自动化的录制启停。
质量优化方案
为减少视频录制对测试稳定性的影响,我们实施了以下优化:
- 降低ffmpeg编码质量参数
- 限制视频帧率和分辨率
- 采用更高效的视频编码格式
执行流程控制
测试工作流的具体控制逻辑如下:
- 首次执行不启用视频录制
- 检测到失败后:
- 上传首次执行的日志和截图
- 自动触发二次执行(启用视频录制)
- 二次执行结果处理:
- 若失败:上传视频及二次执行的诊断信息
- 若成功:标记为需人工检查的潜在flake
实现细节
多用户场景处理
在验收测试中,Oppia项目需要模拟多用户交互场景。我们的方案为每个用户会话创建独立的视频记录,最终打包为ZIP归档。例如,一个涉及4个用户的测试用例将生成4个独立的视频文件。
错误处理机制
为确保测试可靠性,我们建立了严格的错误处理规则:
- 无论二次执行结果如何,首次失败都会导致工作流失败
- 二次执行成功时,在日志中添加明确警告,提示需要人工检查潜在问题
实施效果
该方案实施后带来了显著改进:
- 问题诊断效率提升:视频记录提供了完整的操作上下文
- 测试稳定性保障:通过优化录制参数和二次执行策略,减少了视频录制引入的flake
- 资源利用优化:仅在必要时才进行资源密集的视频录制
最佳实践建议
基于Oppia项目的实施经验,我们总结出以下建议:
- 视频参数调优:需要在视频质量和执行稳定性间找到平衡点
- 执行策略定制:根据测试场景复杂度调整重试次数和录制范围
- 结果分析流程:建立标准化的视频分析流程,提高问题定位效率
这套方案不仅解决了Oppia项目的特定需求,其设计思路也可为其他Web应用项目的测试框架优化提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137