探索Alien-Signals中的批量更新与同步机制
2025-07-05 11:13:04作者:俞予舒Fleming
在开发基于Alien-Signals的拖拽库时,我们遇到了两个关键的技术需求:如何批量更新信号以避免不必要的副作用触发,以及如何确保所有计算和副作用完成后再继续执行后续代码。本文将深入探讨Alien-Signals提供的解决方案。
批量更新机制
在响应式编程中,当我们需要连续更新多个信号值时,往往希望这些更新能合并为一次变更通知,而不是触发多次副作用执行。Alien-Signals提供了startBatch和endBatch这对API来实现这一需求。
import { startBatch, endBatch } from 'alien-signals'
startBatch()
// 在这里进行多个信号的更新
signal1.set(value1)
signal2.set(value2)
endBatch() // 所有更新将在此处一次性通知
这种批量更新机制特别适合以下场景:
- 需要原子性更新的操作
- 性能敏感区域,减少不必要的计算
- 需要确保多个信号状态一致性的情况
同步执行模型
与某些响应式系统不同,Alien-Signals采用了同步执行模型。这意味着所有副作用和计算会在信号更新或批量更新结束时立即执行,而不需要等待下一个事件循环。
这种设计带来了几个优势:
- 可预测性:开发者可以确切知道副作用何时执行
- 简化调试:执行顺序更加直观
- 无需额外的"tick"等待机制
实际应用示例
在拖拽库的实现中,我们可以这样组织代码:
// 开始批量更新
startBatch()
// 更新拖拽位置信息
instance.ctx.delta.set({
x: e.clientX - instance.ctx.initial.x - instance.ctx.offset.x,
y: e.clientY - instance.ctx.initial.y - instance.ctx.offset.y
})
// 更新提议位置
instance.ctx.proposed.set({
x: instance.ctx.delta.x,
y: instance.ctx.delta.y
})
// 结束批量更新,此时所有相关副作用会同步执行
endBatch()
// 由于副作用是同步执行的,这里可以直接处理结果
untrack(() => {
instance.ctx.offset.set({
x: instance.ctx.offset.x + (instance.ctx.proposed.x ?? 0),
y: instance.ctx.offset.y + (instance.ctx.proposed.y ?? 0)
})
})
设计思考
Alien-Signals的这种同步+批量更新的设计,在简单性和性能之间取得了很好的平衡。它避免了异步调度带来的复杂性,同时通过批量更新机制减少了不必要的计算开销。
对于开发者而言,理解这种执行模型非常重要:
- 所有响应式操作都是同步的
- 批量更新可以优化性能
- 不需要额外的等待机制
这种设计使得Alien-Signals特别适合需要精确控制执行顺序的场景,如动画、拖拽交互等对时序敏感的应用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
664
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
299
Ascend Extension for PyTorch
Python
216
236
React Native鸿蒙化仓库
JavaScript
255
320
仓颉编译器源码及 cjdb 调试工具。
C++
133
866
仓颉编程语言运行时与标准库。
Cangjie
140
875
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
649
仓颉编程语言开发者文档。
59
818