探索生存分析新纪元:PySurvival - 强大的Python生存分析工具
2024-05-20 12:33:18作者:温玫谨Lighthearted
在医疗研究、金融风险评估和客户流失预测等领域,生存分析是一种至关重要的数据分析方法,它能帮助我们评估事件发生的可能性。PySurvival,一个基于Python的开源生存分析库,正是为了满足这一需求而诞生的。它集成了机器学习领域的诸多强大功能,并提供了直观易用的API。
项目介绍
PySurvival 是一款以NumPy、SciPy和PyTorch为后盾的生存分析包,兼容Python 2.7-3.7。它的目标是将理论知识与实践应用相结合,提供从数据探索到模型构建和预测的全方位教程。PySurvival包含了超过10种不同的模型,如经典的Cox比例风险模型,先进的神经多任务逻辑回归,以及随机生存森林等。不仅如此,该项目还提供了详细的数据分析教程,涵盖了从客户流失分析到信贷风险评估等多个领域。

技术分析
PySurvival 的设计旨在简化生存分析的流程。它封装了各种模型的训练、验证和预测过程,同时还提供了诸如c-index和Brier Score等性能评估指标。通过简明的API,例如fit()和predict(),您可以轻松地搭建和使用模型。此外,该库支持模型的加载和保存,确保了模型成果的有效利用和长期存储。
应用场景
PySurvival 在多个行业中都有广泛应用:
- 医学研究中,可以评估患者生存率或疾病复发可能性。
- 金融服务中,用于分析信贷违约风险或监控账户异常行为。
- 客户关系管理中,评估客户的生命周期价值,预防客户流失。
项目特点
- 多元化模型选择:包括半参数模型(如CoxPH)和非参数模型(如随机森林),以及深度学习模型。
- 详尽的文档:为每个模型提供了理论基础、API说明和实例教程。
- 易于上手:简单一致的API设计使得初学者也能快速上手。
- 性能评估:内置多种评估指标,便于比较不同模型的预测效果。
- 持久化模型:支持模型的保存和加载,方便在生产环境中使用。
开始你的生存分析之旅
安装PySurvival只需一行命令:
pip install pysurvival
以下是一个快速入门示例,展示了如何构建Cox比例风险模型和线性多任务模型:
from pysurvival.models.semi_parametric import CoxPHModel
from pysurvival.models.multi_task import LinearMultiTaskModel
from pysurvival.datasets import Dataset
from pysurvival.utils.metrics import concordance_index
# 加载并分割数据集
X_train, T_train, E_train, X_test, T_test, E_test = \
Dataset('simple_example').load_train_test()
# 构建CoxPH模型
coxph_model = CoxPHModel()
coxph_model.fit(X_train, T_train, E_train)
# 构建线性多任务模型
mtlr = LinearMultiTaskModel()
mtlr.fit(X_train, T_train, E_train)
# 评估模型性能
c_index1 = concordance_index(coxph_model, X_test, T_test, E_test)
c_index2 = concordance_index(mtlr, X_test, T_test, E_test)
print("CoxPH模型c指数 = {:.2f}".format(c_index1))
print("MTLR模型c指数 = {:.2f}".format(c_index2))
现在,您已经准备好借助PySurvival的力量,开启您的生存分析之旅。让我们一起深入探索这个强大的开源库,挖掘数据中的未知信息,以更科学的方式评估事件发生的可能性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
Ascend Extension for PyTorch
Python
221
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.86 K
React Native鸿蒙化仓库
JavaScript
260
322