KubeBlocks中ClickHouse集群数据同步问题分析与解决方案
问题背景
在使用KubeBlocks部署ClickHouse分布式集群时,用户遇到了数据不同步的问题。具体表现为:当通过客户端向集群写入数据后,不同节点查询到的结果不一致,部分节点甚至无法识别已创建的数据表。
问题现象
用户部署了一个包含3个节点的ClickHouse集群(2个ClickHouse节点和1个Keeper节点),并通过测试客户端持续向集群写入数据。然而在查询时发现:
- 节点1(chouse-ggdyxr-clickhouse-0)报错"Database executions_loop doesn't exist"
 - 节点2(chouse-ggdyxr-clickhouse-1)成功查询到7779条记录
 - 节点3(chouse-ggdyxr-clickhouse-2)同样报错"Database executions_loop doesn't exist"
 
这表明集群中的数据没有正确同步,只有部分节点接收到了数据变更。
技术分析
ClickHouse作为分布式数据库,其DDL(数据定义语言)操作需要显式指定在集群范围内执行。默认情况下,DDL语句仅在当前连接的节点上执行,不会自动传播到集群中的其他节点。
在用户案例中,创建数据库和表的DDL操作没有正确同步到所有节点,导致部分节点无法识别这些数据库对象。而DML(数据操作语言)操作则通过分布式表机制正常同步,因此部分节点能够查询到数据。
解决方案
要解决这个问题,需要在执行DDL语句时显式指定集群范围。ClickHouse提供了ON CLUSTER语法来实现这一功能。具体修改如下:
- 创建数据库时应使用:
 
CREATE DATABASE executions_loop ON CLUSTER default
- 创建表时应使用:
 
CREATE TABLE executions_loop.executions_loop_table ON CLUSTER default (...)
其中default是ClickHouse集群的名称,需要与部署时的集群配置保持一致。
最佳实践建议
- 
统一DDL执行方式:所有DDL操作都应添加
ON CLUSTER子句,确保集群范围内的一致性 - 
集群命名规范:部署时明确指定集群名称,并在所有DDL中保持一致
 - 
客户端配置:在应用程序中配置正确的连接参数,确保连接到正确的集群
 - 
监控验证:定期检查各节点的数据一致性,确保DDL操作已正确同步
 - 
权限管理:确保执行DDL操作的用户具有足够的集群级别权限
 
总结
KubeBlocks部署的ClickHouse集群出现数据不同步问题,主要是由于DDL操作没有正确指定集群范围导致的。通过使用ON CLUSTER语法可以确保DDL操作在整个集群中同步执行,从而保证数据一致性。在实际生产环境中,建议将这一要求纳入开发规范,并通过自动化工具进行检查,以避免类似问题的发生。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00