Aleph项目自定义文档处理器的开发指南
2025-07-04 10:24:12作者:江焘钦
Aleph作为一个开源情报分析平台,提供了强大的文档处理能力。本文将详细介绍如何在Aleph中开发自定义文档处理器,帮助开发者扩展平台功能以满足特定需求。
处理器基础架构
Aleph的文档处理基于Worker类实现,开发者需要继承此类并实现核心方法。基础处理器结构如下:
class ServiceWorker(Worker):
def _analyze(self, dataset, task):
# 处理逻辑实现
pass
def handle(self, task):
# 任务处理入口
pass
处理完整文档内容
当需要处理完整文档而非片段时,关键在于正确筛选目标实体类型。例如处理电子邮件时:
def _analyze(self, dataset, task):
entity_ids = set(task.payload.get("entity_ids"))
for entity in dataset.partials(entity_id=entity_ids):
if not entity.schema.is_a("Email"):
continue
# 处理完整的Email实体内容
print(entity.get("bodyText")) # 获取邮件正文
多媒体文件处理
对于图像、音频、视频等多媒体文件,可通过以下方式获取内容:
- 检查实体类型是否为File或Image等多媒体类型
- 通过实体属性获取文件内容或元数据
- 使用专门的解析库处理特定格式
if entity.schema.is_a("Image"):
# 获取图像元数据
print(entity.get("width"), entity.get("height"))
# 处理图像内容需要访问原始文件
处理器集成
将自定义处理器集成到Aleph处理流水线中:
- 在环境变量ALEPH_INGEST_PIPELINE中添加处理器名称
- 确保处理器代码被正确加载
- 处理器应返回处理后的实体ID列表
最佳实践
- 明确处理器目标:确定是处理特定类型文档还是所有文档
- 性能考虑:大文件处理需注意内存使用和超时问题
- 错误处理:妥善处理各种异常情况
- 日志记录:详细记录处理过程便于调试
通过以上方法,开发者可以灵活扩展Aleph的文档处理能力,满足各种复杂的情报分析需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
165
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
230
仓颉编译器源码及 cjdb 调试工具。
C++
123
671
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
196
72
仓颉编程语言测试用例。
Cangjie
36
672