Terraformer项目在Apple Silicon设备上的安装指南
GoogleCloudPlatform旗下的Terraformer是一个强大的基础设施即代码工具,它能够将现有云资源逆向工程为Terraform配置。随着Apple Silicon芯片(M1/M2等)的普及,许多开发者在ARM架构的Mac设备上安装Terraformer时遇到了兼容性问题。
Apple Silicon安装背景
传统上,大多数软件都针对x86架构编译,而Apple Silicon使用的是ARM架构。虽然Rosetta 2转译层可以运行x86应用,但原生ARM版本通常能提供更好的性能和兼容性。Terraformer从0.8.24版本开始为Apple Silicon设备提供了原生支持。
安装步骤详解
-
设置环境变量
首先需要指定要安装的provider类型。对于Apple Silicon设备,目前官方只提供了"all"和"azure"两种ARM64版本:export PROVIDER=all
-
下载最新版本
通过curl命令获取最新的发布版本并下载对应的二进制文件:curl -LO "https://github.com/GoogleCloudPlatform/terraformer/releases/download/$(curl -s https://api.github.com/repos/GoogleCloudPlatform/terraformer/releases/latest | grep tag_name | cut -d '"' -f 4)/terraformer-${PROVIDER}-darwin-arm64"
-
设置执行权限
下载完成后,需要赋予文件可执行权限:chmod +x terraformer-${PROVIDER}-darwin-arm64
-
安装到系统路径
最后将可执行文件移动到系统PATH包含的目录中:sudo mv terraformer-${PROVIDER}-darwin-arm64 /usr/local/bin/terraformer
注意事项
-
Provider选择
目前Apple Silicon版本仅支持"all"和"azure"两种provider,选择其他provider会导致安装失败。 -
版本兼容性
确保下载的是最新版本,旧版本可能不包含ARM64架构的支持。 -
权限问题
如果遇到权限错误,可以尝试不使用sudo,而是将文件移动到用户有写权限的目录,如~/bin,并确保该目录在PATH环境变量中。
验证安装
安装完成后,可以通过以下命令验证:
terraformer version
如果安装成功,将显示当前安装的Terraformer版本信息。
结语
随着ARM架构在个人计算设备上的普及,越来越多的开发者工具开始提供原生支持。Terraformer对Apple Silicon的原生支持虽然目前还限于特定provider,但已经能够满足基本使用需求。开发者可以期待未来版本中对更多provider的ARM64支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~043CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









