AWS Deep Learning Containers发布PyTorch 2.3.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器经过优化,可直接在Amazon EC2实例上运行,大大简化了深度学习环境的配置过程。
最新版本特性
AWS近期发布了PyTorch 2.3.0训练镜像的两个重要版本,分别支持CPU和GPU计算环境。这两个镜像基于Ubuntu 20.04操作系统构建,预装了Python 3.11环境,为开发者提供了开箱即用的深度学习训练环境。
CPU版本镜像
CPU版本镜像(2.3.0-cpu-py311-ubuntu20.04-ec2-v1.33)包含了PyTorch 2.3.0及其相关生态组件,如:
- TorchVision 0.18.0
- TorchAudio 2.3.0
- NumPy 1.26.4
- SciPy 1.13.0
- Pandas 2.2.2
- OpenCV-Python 4.9.0.80
- scikit-learn 1.6.1
该镜像还预装了常用的开发工具如Emacs,以及AWS CLI工具链(awscli 1.32.108、boto3 1.34.108等),方便开发者与AWS服务进行交互。
GPU版本镜像
GPU版本镜像(2.3.0-gpu-py311-cu121-ubuntu20.04-ec2-v1.33)在CPU版本基础上增加了对CUDA 12.1的支持,并包含了NVIDIA cuDNN 8库。特别值得注意的是,该镜像预装了NVIDIA Apex库(0.1版本),这是一个用于混合精度训练和分布式训练的PyTorch扩展库,能够显著提升模型训练效率。
技术亮点
-
Python 3.11支持:两个镜像均基于Python 3.11构建,充分利用了最新Python版本在性能和功能上的改进。
-
PyTorch生态完整性:镜像不仅包含PyTorch核心框架,还集成了完整的PyTorch生态系统工具,如TorchVision和TorchAudio,覆盖了计算机视觉和音频处理领域的常见需求。
-
科学计算栈:预装了完整的科学计算工具链,包括NumPy、SciPy、Pandas和scikit-learn,便于数据预处理和分析工作。
-
开发友好性:内置Emacs编辑器,方便开发者直接在容器内进行代码编辑和调试。
-
AWS服务集成:预装AWS CLI工具和Python SDK(boto3),简化了与S3等AWS服务的交互过程。
应用场景
这些预构建的DLC镜像特别适合以下场景:
- 快速启动PyTorch训练任务,无需手动配置环境
- 在Amazon EC2实例上部署深度学习工作负载
- 构建可复现的机器学习实验环境
- 开发需要与AWS服务集成的深度学习应用
总结
AWS Deep Learning Containers提供的这些PyTorch训练镜像,通过预集成和优化深度学习工具链,显著降低了开发者入门深度学习的门槛。特别是对于需要在AWS云平台上运行PyTorch工作负载的用户,这些镜像提供了即用型解决方案,可以节省大量环境配置时间,让开发者能够专注于模型开发和训练本身。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00