dplyr中实现数据上采样的技术方案
2025-06-10 15:39:19作者:平淮齐Percy
在数据分析和机器学习领域,数据不平衡是一个常见问题。本文探讨了如何使用dplyr包实现数据上采样(up-sampling)的技术方案,以解决分类任务中类别不平衡的问题。
数据不平衡问题概述
数据不平衡指的是在分类问题中,不同类别的样本数量差异显著。例如在企鹅物种分类数据中,Adelie有152个样本,而Chinstrap只有68个样本。这种不平衡会影响机器学习模型的训练效果。
传统解决方案
传统上,我们可以使用base R的split-apply-combine模式或data.table包来解决这个问题:
# base R方案
do.call(rbind, lapply(split(x, ~.outcome), function(xx) {
n = nrow(xx)
if (n == maxClass) return(xx)
new_rows <- sample.int(n, maxClass - n, replace = TRUE)
rbind(xx, xx[new_rows, ])
}))
# data.table方案
x[, by = .outcome, {
out <- .SD
if (.N < maxClass) {
new_rows <- sample.int(.N, maxClass - .N, replace = TRUE)
out <- rbind(out, .SD[new_rows])
}
out
}]
然而,这些方法存在一些缺点,如split()会静默删除缺失值,且语法不够直观。
dplyr解决方案
dplyr提供了更优雅的解决方案。核心思路是:
- 计算每个类别的最大样本数
- 对样本数不足的类别进行有放回的随机抽样
- 组合原始数据和补充数据
具体实现如下:
upsample_indices <- function(n_elt, n_max) {
indices <- seq_len(n_elt)
if (n_elt < n_max) {
extra <- sample(indices, size = n_max - n_elt, replace = TRUE)
indices <- c(indices, extra)
}
indices
}
result <- dplyr::slice(data, upsample_indices(dplyr::n(), n_max), .by = .outcome)
技术要点解析
- slice()函数:这是dplyr中用于按行索引选择数据的函数,配合.by参数可以按组操作
- upsample_indices():自定义函数,生成需要保留和补充的行索引
- replace=TRUE:确保可以进行有放回抽样,这是上采样的关键
优势分析
相比传统方法,dplyr方案具有以下优势:
- 代码更简洁易读
- 自动处理分组操作
- 不会静默删除缺失值
- 保持了原始数据的完整性
- 与tidyverse生态无缝集成
实际应用建议
在实际项目中,可以考虑以下优化:
- 添加随机种子设置保证可重复性
- 考虑使用stratified sampling策略
- 结合recipes包构建完整的数据预处理流程
- 对于大数据集,考虑使用sparklyr实现分布式采样
这种上采样技术特别适用于分类模型训练前的数据准备阶段,能有效改善少数类别的学习效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19