dplyr中实现数据上采样的技术方案
2025-06-10 15:39:19作者:平淮齐Percy
在数据分析和机器学习领域,数据不平衡是一个常见问题。本文探讨了如何使用dplyr包实现数据上采样(up-sampling)的技术方案,以解决分类任务中类别不平衡的问题。
数据不平衡问题概述
数据不平衡指的是在分类问题中,不同类别的样本数量差异显著。例如在企鹅物种分类数据中,Adelie有152个样本,而Chinstrap只有68个样本。这种不平衡会影响机器学习模型的训练效果。
传统解决方案
传统上,我们可以使用base R的split-apply-combine模式或data.table包来解决这个问题:
# base R方案
do.call(rbind, lapply(split(x, ~.outcome), function(xx) {
n = nrow(xx)
if (n == maxClass) return(xx)
new_rows <- sample.int(n, maxClass - n, replace = TRUE)
rbind(xx, xx[new_rows, ])
}))
# data.table方案
x[, by = .outcome, {
out <- .SD
if (.N < maxClass) {
new_rows <- sample.int(.N, maxClass - .N, replace = TRUE)
out <- rbind(out, .SD[new_rows])
}
out
}]
然而,这些方法存在一些缺点,如split()会静默删除缺失值,且语法不够直观。
dplyr解决方案
dplyr提供了更优雅的解决方案。核心思路是:
- 计算每个类别的最大样本数
- 对样本数不足的类别进行有放回的随机抽样
- 组合原始数据和补充数据
具体实现如下:
upsample_indices <- function(n_elt, n_max) {
indices <- seq_len(n_elt)
if (n_elt < n_max) {
extra <- sample(indices, size = n_max - n_elt, replace = TRUE)
indices <- c(indices, extra)
}
indices
}
result <- dplyr::slice(data, upsample_indices(dplyr::n(), n_max), .by = .outcome)
技术要点解析
- slice()函数:这是dplyr中用于按行索引选择数据的函数,配合.by参数可以按组操作
- upsample_indices():自定义函数,生成需要保留和补充的行索引
- replace=TRUE:确保可以进行有放回抽样,这是上采样的关键
优势分析
相比传统方法,dplyr方案具有以下优势:
- 代码更简洁易读
- 自动处理分组操作
- 不会静默删除缺失值
- 保持了原始数据的完整性
- 与tidyverse生态无缝集成
实际应用建议
在实际项目中,可以考虑以下优化:
- 添加随机种子设置保证可重复性
- 考虑使用stratified sampling策略
- 结合recipes包构建完整的数据预处理流程
- 对于大数据集,考虑使用sparklyr实现分布式采样
这种上采样技术特别适用于分类模型训练前的数据准备阶段,能有效改善少数类别的学习效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134