Flax v0.10.6 版本发布:深度学习框架的重要更新
Flax 是一个基于 JAX 构建的灵活神经网络库,由 Google 开发并维护。它提供了高级 API 来构建和训练神经网络模型,同时保持了 JAX 的函数式编程范式和自动微分能力。Flax 特别适合研究人员和工程师需要高度灵活性和性能的场景。
核心功能改进
注意力机制增强
本次版本对注意力机制进行了多项改进。首先,Sow 操作现在支持基于绝对值的 top 激活值选择,这为注意力机制提供了更灵活的激活值筛选方式。其次,新增了对层特定 RoPE(Rotary Position Embedding)缩放因子的支持,允许不同层使用不同的位置编码缩放策略,这在处理长序列时特别有用。
模型自动选择
Flax 现在为 Gemma 3 模型提供了自动模型选择功能。这一改进简化了模型加载过程,用户不再需要手动指定模型配置,框架能够根据模型标识自动选择最优配置。
性能优化
FP8 支持
NVIDIA 贡献了对 FP8(8位浮点数)Einsum 操作的支持。FP8 是新一代的数值格式,特别适合现代 GPU 架构,能够显著减少内存占用并提高计算效率,同时保持足够的模型精度。
自定义 Einsum 操作
新增了自定义 Einsum 操作功能,允许用户为特定的张量运算提供优化实现。这一特性对于需要极致性能的场景非常有用,用户可以根据硬件特性或特定计算模式提供最优实现。
模型训练与保存改进
分布式训练优化
在并行训练(pmap)场景下,Flax 现在会在保存检查点前自动将数组完全复制。这一改进解决了分布式训练中模型保存的一致性问题,确保所有设备上的参数都能正确保存。
NNX 模块重构
NNX 是 Flax 的神经网络扩展模块,本次版本进行了多项重构:
- 移除了已弃用的 API,简化了接口设计
- 重构了 GraphDef 实现,提高了模块的灵活性和可扩展性
- 引入了 flaxlib 类型系统,增强了类型安全性
这些改进使得 NNX 模块更加稳定和易于维护,同时为未来的功能扩展奠定了基础。
其他改进
LoRA(Low-Rank Adaptation)模块现在支持有效的 dtype 参数,允许用户更灵活地控制低秩适配的计算精度。此外,修复了多个 CI 相关的问题,提高了开发流程的稳定性。
总结
Flax v0.10.6 版本带来了多项重要改进,特别是在注意力机制、数值计算精度和分布式训练方面。这些更新不仅提高了框架的性能和灵活性,也增强了用户体验。对于深度学习研究者和工程师来说,这些改进将有助于构建更高效、更强大的神经网络模型。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00