Coursera 机器学习项目:Python 实现
2025-05-18 05:15:12作者:柯茵沙
1. 项目介绍
本项目是基于 Coursera 上的机器学习课程,由 Andrew Ng 教授主讲。项目包含了课程中部分练习的 Python 实现。这些练习涉及到线性回归、逻辑回归、多类分类与神经网络、神经网络学习、正则化线性回归及偏差与方差、支持向量机、K-means 聚类与主成分分析、异常检测与推荐系统等内容。本项目旨在提供一个使用 Python 语言实现的参考,以帮助学习者更好地理解和掌握机器学习的基本概念和算法。
2. 项目快速启动
以下是一个简单的线性回归示例代码,用于展示如何使用本项目中的代码。
import numpy as np
from Coursera_Machine_Learning.ex1.linear_regression import LinearRegression
# 生成数据集
X = np.array([[1, 1], [1, 2], [1, 3]])
y = np.array([1, 2, 3])
# 创建线性回归模型
model = LinearRegression()
# 训练模型
model.fit(X, y)
# 进行预测
predictions = model.predict(X)
# 打印预测结果
print(predictions)
在上述代码中,LinearRegression
类是线性回归模型的实现。fit
方法用于训练模型,而 predict
方法用于进行预测。
3. 应用案例和最佳实践
- 数据预处理:在进行机器学习之前,数据预处理是至关重要的。最佳实践包括数据清洗、标准化和特征选择等步骤。
- 模型选择:根据问题的性质选择合适的模型。例如,对于分类问题,可以选择逻辑回归、支持向量机或神经网络等模型。
- 交叉验证:使用交叉验证来评估模型的性能,以防止过拟合。
- 调参:通过调整模型参数来优化模型性能,例如学习率、正则化参数等。
4. 典型生态项目
- Scikit-learn:一个广泛使用的机器学习库,提供了多种机器学习算法的实现。
- TensorFlow:一个由 Google 开发的人工智能库,用于构建和训练神经网络。
- Keras:一个高层神经网络API,可以运行在 TensorFlow、CNTK 或 Theano 之上。
通过结合这些生态项目,您可以进一步扩展本项目的功能,探索更复杂的机器学习模型和应用。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
880
520

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

React Native鸿蒙化仓库
C++
181
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78