Apache DolphinScheduler 3.2.x 版本中Worker组随机丢失问题分析与解决方案
问题现象
在Apache DolphinScheduler 3.2.2版本的生产环境中,我们观察到任务调度系统偶尔会出现任务失败的情况。错误日志显示系统无法找到已明确存在的Worker组,报错信息如下:
Dispatch task: 看板推送任务实例同步 failed, worker group not found.
org.apache.dolphinscheduler.server.master.dispatch.exceptions.WorkerGroupNotFoundException: Cannot find worker group: Can not find worker group 数仓
值得注意的是,这些失败是随机发生的,同一个Worker组下的800多个任务中只有少数会失败,且重试后都能成功执行。这种现象不仅出现在自定义Worker组(如"数仓")上,也会出现在默认Worker组上。
问题根源分析
通过对源代码的深入研究和日志分析,我们发现问题的根源在于Worker资源管理机制的设计:
-
Worker状态同步机制:Master节点会定期同步Worker节点的资源状态,当Worker节点被标记为"BUSY"状态时,系统会将该Worker从可用资源列表中移除。
-
资源同步实现细节:在
LowerWeightHostManager
类中,syncWorkerResources
方法会遍历所有Worker组和节点,检查每个Worker的心跳状态。如果Worker处于BUSY状态,则不会将其加入可用资源列表。 -
全量更新策略:系统采用全量更新策略,每次同步都会先清空
workerHostWeightsMap
再重新填充。这意味着如果某个Worker组的所有节点都处于BUSY状态,该Worker组会暂时从可用列表中消失。 -
CPU过载保护:日志显示Worker节点CPU使用率偶尔会超过阈值(默认90%),触发系统的过载保护机制,将Worker标记为BUSY状态。
技术实现缺陷
当前的实现存在几个值得商榷的设计点:
-
状态表示不准确:将BUSY状态的Worker完全从资源列表中移除,导致系统误报"Worker组不存在",实际上只是资源暂时不可用。
-
同步策略激进:全量清空再重建的方式会导致短暂的资源真空期,可能引发任务调度失败。
-
错误处理不友好:系统将资源不足的情况错误地表示为资源不存在,给问题排查带来困扰。
解决方案
针对这一问题,我们建议从以下几个方面进行优化:
短期解决方案(配置调整)
对于正在使用3.2.2版本的用户,可以采取以下临时措施缓解问题:
-
调整Worker配置:
# 禁用服务器负载保护 worker.server-load-protection.enabled=false # 增加执行线程数 worker.exec-threads=500 # 修改线程满策略为继续排队 worker.task-execute-threads-full-policy=CONTINUE
-
增加Worker节点:分散任务负载,降低单个节点过载风险。
长期解决方案(代码优化)
建议在后续版本中改进资源管理机制:
-
区分资源状态:将"Worker组不存在"和"Worker资源不足"两种情况进行区分处理。
-
优化同步策略:改为增量更新方式,避免资源列表的完全重建。
-
改进错误处理:当Worker处于BUSY状态时,应明确提示资源紧张而非组不存在。
最佳实践建议
-
监控系统指标:密切监控Worker节点的CPU、内存和线程池使用情况,提前发现潜在问题。
-
合理设置阈值:根据实际硬件配置调整
maxSystemCpuUsagePercentageThresholds
等参数。 -
版本升级计划:关注社区后续版本中对此问题的修复,及时升级。
-
任务调度策略:考虑将重要任务分散到不同Worker组,提高系统容错能力。
总结
Apache DolphinScheduler作为优秀的分布式任务调度系统,其Worker资源管理机制在大多数场景下表现良好。本文分析的Worker组随机丢失问题揭示了在高负载场景下的一个边缘情况。通过理解其内部机制,我们可以更好地配置和使用系统,同时也为社区改进提供了方向。建议用户根据自身业务特点选择合适的解决方案,并在生产环境中充分测试配置变更的效果。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









