AFL++ 中关于 Select 语句覆盖率分析的深入探讨
2025-06-06 00:47:07作者:胡唯隽
背景介绍
在模糊测试领域,AFL++ 作为一款先进的模糊测试工具,其覆盖率引导机制对于发现程序中的潜在问题至关重要。本文探讨了 AFL++ 在处理 LLVM IR 中 select 语句时的覆盖率分析问题,这一问题在复杂条件判断场景下尤为明显。
问题本质
当程序中的复杂条件判断被 LLVM 优化为 select 语句时,现有的覆盖率分析机制存在局限性。具体表现为:
- 条件简化:编译器会将嵌套的 if 条件优化为一系列 select 语句
- 覆盖率丢失:当前实现只跟踪 select 语句本身,而忽略了构成条件的各个比较操作
- 变异效率下降:由于覆盖率信息不完整,模糊器可能错过有价值的输入变异
技术分析
通过分析示例程序,我们可以看到 LLVM 生成的 IR 代码将复杂的条件判断分解为多个步骤:
- 首先进行单个条件的比较(如
icmp指令) - 然后通过
and或select组合这些比较结果 - 最终生成一个综合的判断结果
现有的 AFL++ 实现仅对 select 语句的最终结果进行插桩,而忽略了中间各个比较操作的执行路径。这导致即使输入触发了不同的中间条件组合,只要最终结果相同,就会被视为相同的覆盖率路径。
解决方案探索
开发团队提出了几种改进思路:
- 回溯分析:通过分析 select 语句的操作数来源,识别出所有相关的比较操作
- 全面插桩:对所有产生布尔结果的比较操作进行插桩,除非它们用于基本块终止
- 选择性插桩:仅对影响控制流的比较操作进行插桩
经过实践验证,最终采用了"全面插桩"的方案,在 hidden 分支中实现了对所有相关比较操作的覆盖率跟踪。
实现意义
这一改进带来了多方面的好处:
- 更精细的路径区分:能够区分触发了不同中间条件的执行路径
- 提高变异效率:模糊器能够更准确地识别有价值的输入变异
- 增强问题发现能力:增加了发现边界条件相关问题的机会
结论
AFL++ 通过改进对 LLVM IR 中 select 语句的覆盖率分析,进一步提升了其作为模糊测试工具的精确性和有效性。这一改进特别适用于处理包含复杂条件判断的代码,为发现更深层次的软件问题提供了更好的支持。
对于模糊测试研究人员和开发者而言,理解这一改进背后的技术原理,有助于更好地利用 AFL++ 进行安全测试和问题挖掘工作。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217