在SysReptor中创建资产与漏洞关联表格的技术实现
2025-07-07 12:02:03作者:昌雅子Ethen
背景介绍
在大型Web渗透测试项目中,经常需要处理大量网站和重复出现的漏洞。传统的报告方式往往难以清晰地展示漏洞与受影响资产之间的对应关系。SysReptor作为一个专业的报告工具,提供了灵活的模板定制功能,可以帮助安全团队高效地生成结构化的测试报告。
核心需求分析
安全团队通常需要两种视角的报告内容:
- 以漏洞为中心的视图:展示每个漏洞的详细信息及所有受影响资产
- 以资产为中心的视图:便于客户快速了解每个站点需要修复哪些漏洞
本文重点介绍如何在SysReptor报告中实现第二种视图 - 创建一个资产与漏洞的关联表格。
技术实现方案
基础表格结构
使用HTML表格结合Vue.js模板语法,可以动态生成关联表格:
<table>
<thead>
<tr>
<th>漏洞名称</th>
<th>受影响资产</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<template v-for="finding in findings">
<tr class="table-row-link">
<td>
<a :href="'#' + finding.id">{{ finding.title }}</a>
</td>
<td>
<template v-if="finding.affected_components.length === 0"></template>
<template v-else-if="finding.affected_components.length === 1">
<a :href="'#' + finding.id">{{ finding.affected_components[0] }}</a>
</template>
<template v-else>
<template v-for="s in finding.affected_components">
<a :href="'#' + finding.id">{{ s }}</a>
</template>
</template>
</td>
<td>
<a :href="'#' + finding.id" class="finding-pagenumber"></a>
</td>
</tr>
</template>
</tbody>
</table>
关键功能实现
-
页码自动生成
通过CSS伪元素实现页码自动关联:.finding-pagenumber::after { content: target-counter(attr(href), page); text-decoration: none; color: initial; } -
资产列表格式化
确保每个资产单独显示一行:tr.table-row-link a { display: block; } -
URL换行处理
防止长URL被意外截断:<table style="white-space:nowrap;">
实际应用效果
该方案实现了:
- 清晰的资产-漏洞对应关系展示
- 自动关联报告正文中的详细内容
- 页码自动生成,便于快速定位
- 美观的排版格式,避免URL截断问题
最佳实践建议
- 在项目初期就规划好报告结构,确定需要展示的字段
- 对affected_components字段进行规范化录入,确保数据一致性
- 根据实际需求调整表格列宽和样式
- 考虑添加排序功能,便于客户按资产或漏洞类型查看
这种资产与漏洞的关联表格不仅提升了报告的专业性,也大大提高了客户阅读和使用报告的效率,是大型安全测试项目中值得推荐的做法。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146