统一摘要模型:深度学习文本摘要新突破!
2024-06-21 04:35:11作者:魏侃纯Zoe
本文将向您引荐一个名为"Unified Summarization"的开源项目,这是一个创新的深度学习模型,旨在统一提取式和抽象式摘要方法,并以不一致性损失为优化目标。这个项目由Hsu等人在2018年提出,并已在ACL会议上发表,其代码库现在可供公众使用。
项目介绍
"Unified Summarization"项目提供了一个强大的框架,该框架能够同时进行提取式和抽象式文本摘要,并通过引入新的不一致性损失函数提升模型性能。该项目基于TensorFlow实现,支持CNN/Daily Mail数据集,提供了完整的预处理、训练和评估流程,以及预训练模型供快速上手。
项目技术分析
项目采用了两个主要组件:选择器(extractor)和重写器(rewriter)。选择器负责从原文中挑选关键句子,而重写器则在此基础上生成新的摘要。这两个组件可以单独训练,也可以作为整体模型进行端到端的联合训练。关键创新在于使用不一致性损失,鼓励模型生成与原文内容一致但精炼的摘要。
应用场景
- 自动新闻摘要:媒体机构可利用该模型自动压缩新闻报道,提高生产效率。
- 智能助手:帮助用户快速浏览长篇文档,如学术文献或法律文件。
- 教育领域:用于学习资料的精华提取,辅助学生复习。
项目特点
- 集成性:统一了提取式和抽象式摘要,避免了单一方法的局限性。
- 灵活性:支持在线评估,能在训练过程中实时调整模型。
- 高效性:提供预训练模型,节省了大量训练时间。
- 可扩展性:代码结构清晰,易于与其他NLP任务结合。
- 全面评估:除了传统的ROUGE指标,还引入了不一致性损失作为评估维度。
如果您在研究自然语言处理,特别是在文本摘要领域,"Unified Summarization"是一个不可多得的研究工具。通过这个项目,您可以深入理解并实践先进的文本摘要技术,同时也为您的相关工作提供有力的支持。快来尝试一下,让我们共同探索文本智能处理的新可能!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869