TensorFlow Workshop:在云虚拟机上使用Docker部署TensorFlow环境
2025-07-05 23:26:42作者:温玫谨Lighthearted
前言
TensorFlow作为当前最流行的机器学习框架之一,其环境配置对于初学者来说可能是个挑战。本文将详细介绍如何在Google Cloud Platform(GCP)上通过Docker容器快速搭建TensorFlow开发环境,特别适合参加TensorFlow Workshop的学员使用。
准备工作
1. 注册Google Cloud Platform账号
首先需要注册GCP账号,新用户可获得300美元的免费额度。注册过程需要信用卡验证,但在试用期内不会产生费用。
2. 启用必要API服务
登录GCP控制台后,需要启用以下服务:
- 创建或选择项目
- 在API管理界面中搜索并启用"Google Compute Engine API"
环境搭建步骤
3. 创建容器优化型虚拟机
通过Cloud Shell执行以下命令创建虚拟机实例:
gcloud compute instances create workshop \
--image-family gci-stable \
--image-project google-containers \
--zone us-central1-b --boot-disk-size=100GB \
--machine-type n1-standard-1
此命令将创建一个配置为:
- 100GB磁盘空间
- n1-standard-1规格的虚拟机
- 位于us-central1-b区域
4. 配置防火墙规则
允许外部访问Jupyter Notebook和TensorBoard服务端口:
gcloud compute firewall-rules create workshop --allow tcp:8888,tcp:6006
5. 连接到虚拟机实例
通过GCP控制台的Compute Engine界面:
- 记录实例的外部IP地址
- 使用浏览器内SSH功能连接到实例
TensorFlow容器部署
6. 启动TensorFlow Docker容器
在SSH会话中运行:
docker run -it -p 8888:8888 -p 6006:6006 tensorflow/tensorflow:1.3.0 bash
此命令将:
- 下载TensorFlow 1.3.0官方镜像
- 映射8888(Jupyter)和6006(TensorBoard)端口
- 启动交互式bash会话
7. 获取Workshop材料
在容器内克隆Workshop资源:
git clone tensorflow-workshop.git
8. 启动Jupyter Notebook服务
进入工作目录并启动服务:
cd tensorflow-workshop
jupyter notebook
启动后需要注意:
- 复制控制台输出的访问令牌
- 通过本地浏览器访问
<外部IP>:8888
- 使用令牌完成认证
环境验证
在Jupyter界面中打开examples/00_test_install.ipynb
文件并执行,确认TensorFlow环境正常工作。
环境清理
Workshop结束后,可选择以下操作:
- 完全删除实例(将永久删除所有数据):
gcloud compute instances delete --zone us-central1-b workshop
- 暂时停止实例(保留数据,停止计费):
gcloud compute instances stop --zone us-central1-b workshop
- 删除防火墙规则:
gcloud compute firewall-rules delete workshop
最佳实践建议
- 对于长期项目,建议考虑使用持久化存储
- 根据计算需求调整虚拟机规格
- 定期备份重要笔记本文件
- 使用虚拟环境管理Python依赖
通过这种方式搭建的TensorFlow环境隔离性好,配置简单,特别适合教学和短期项目使用。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8