NNG项目中的Mbed TLS 1.3支持实现分析
在开源项目NNG(Nanomsg Next Generation)中,开发团队近期完成了一个重要的安全特性升级——为Mbed TLS后端添加了TLS 1.3协议支持。这一改进标志着NNG项目在网络安全通信能力上的又一次重要提升。
TLS(传输层安全协议)1.3是当前互联网安全通信的最新标准,相比之前的TLS 1.2版本,它带来了多项显著改进:
-
性能优化:TLS 1.3通过简化握手过程,将完整握手从原来的两次往返减少到一次,显著降低了连接建立的延迟。
-
安全性增强:移除了许多不安全的加密算法和特性,如静态RSA密钥交换、CBC模式加密、SHA-1哈希等,强制使用前向安全加密。
-
0-RTT恢复:支持零往返时间的会话恢复,对于需要频繁建立短连接的应用场景特别有利。
Mbed TLS作为一个轻量级的SSL/TLS实现,广泛应用于嵌入式系统和资源受限环境。NNG项目选择集成Mbed TLS作为其TLS后端之一,正是看中了它在这些场景下的优势。然而,在早期版本中,Mbed TLS对TLS 1.3的支持并不完善,这限制了NNG在这些环境中的安全通信能力。
NNG开发团队通过提交620e7cee8d99362584d49179f4a791bc31ec3510这一关键提交,成功解决了这一问题。这一改动使得使用Mbed TLS后端的NNG应用现在可以充分利用TLS 1.3的各项优势:
- 在物联网设备通信中,更快的握手速度意味着更低的功耗
- 在微服务架构中,0-RTT特性可以显著提升服务间调用的响应速度
- 强制的前向安全性为所有通信提供了更强的安全保障
对于开发者而言,这一改进意味着在使用NNG构建安全通信应用时,现在可以更灵活地选择适合自己应用场景的TLS后端。无论是需要高性能的OpenSSL,还是需要轻量级的Mbed TLS,都能获得最新的TLS 1.3支持。
这一改动也体现了NNG项目对安全通信标准的快速跟进能力,确保了这个高性能消息库能够满足现代分布式系统对安全通信的严格要求。随着TLS 1.3逐渐成为行业标准,NNG的这一改进将帮助其用户构建更安全、更高效的网络应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00