TorchSharp中L1Loss函数实现错误的技术分析
2025-07-10 19:16:23作者:温玫谨Lighthearted
在深度学习框架TorchSharp中,最近发现了一个重要的实现错误:torch.nn.functional.l1_loss
函数实际上计算的是均方误差(MSE)而非预期的平均绝对误差(MAE)。本文将详细分析这一问题的技术细节及其影响。
问题背景
L1Loss(也称为MAE)和MSELoss是深度学习中两种常用的损失函数。L1Loss计算预测值与目标值之间绝对差值的平均值,对异常值不敏感;而MSELoss计算平方差值的平均值,对异常值更为敏感。在TorchSharp的原始实现中,C++后端错误地调用了mse_loss()
函数而非正确的l1_loss()
函数。
技术细节分析
在TorchSharp的底层实现中,THSLoss.cpp文件第94-102行存在错误的函数调用。当用户调用L1Loss时,系统实际上执行的是MSELoss的计算逻辑。这种差异会导致模型训练行为与预期不符,特别是在需要鲁棒性处理的场景中。
影响范围
这一错误会影响所有使用torch.nn.functional.l1_loss
的TorchSharp项目,可能导致:
- 模型训练收敛行为异常
- 在需要抗噪声的场景中性能下降
- 与PyTorch原生实现的结果不一致
解决方案
该问题已通过修改底层C++代码,将错误的mse_loss()
调用替换为正确的l1_loss()
调用得到修复。开发者可以通过更新到最新版本的TorchSharp来获取修复后的实现。
本地测试建议
对于希望自行验证修复效果的开发者,可以使用以下方法在Linux环境下构建本地测试包:
- 使用
dotnet pack
命令打包项目 - 添加
/p:IncludeTorchSharpPackage=true
和/p:IncludeLibTorchCpuPackages=true
参数 - 在本地项目中引用生成的nuget包进行验证
总结
这一问题的发现和修复体现了开源社区协作的价值。开发者在遇到框架行为与预期不符时,应当仔细验证底层实现,并及时向社区反馈。TorchSharp团队快速响应并修复了这一问题,确保了框架的准确性和可靠性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60