Seurat项目中使用TPM数据创建Seurat对象的注意事项
2025-07-01 09:31:49作者:侯霆垣
问题背景
在使用Seurat进行单细胞RNA测序数据分析时,经常会遇到从公共数据库获取的TPM格式数据。TPM(Transcripts Per Million)是一种常见的基因表达标准化方法,但Seurat默认期望输入的是原始计数数据。当用户尝试使用TPM数据直接创建Seurat对象时,可能会遇到各种技术问题。
常见错误分析
从实际案例中可以看到,当用户尝试使用TPM数据创建Seurat对象时,可能会遇到以下几种错误:
-
Rownames不能为空字符串:这通常是由于数据格式不规范导致的,比如数据文件中可能包含注释行或特殊格式的标题行。
-
'x'必须是数值型:这表明数据矩阵中存在非数值型数据,可能是由于数据文件中包含基因描述或其他文本信息。
-
特征名不能包含下划线:Seurat对特征名(基因名)有特定要求,会自动将下划线转换为连字符。
解决方案
针对TPM格式数据创建Seurat对象,可以按照以下步骤进行处理:
-
数据读取与预处理:
- 使用
read.delim读取数据时,设置header=F以避免自动处理标题行 - 手动处理标题行和注释行
- 确保数据矩阵中只包含数值型数据
- 使用
-
数据转换:
- 将数据转换为矩阵格式
- 确保行名和列名正确设置
- 处理可能存在的NA值
-
创建Seurat对象:
- 使用预处理后的数据矩阵创建Seurat对象
- 添加元数据信息(如样本信息)
示例代码
以下是处理TPM数据并创建Seurat对象的完整示例代码:
# 读取数据
feldman <- read.delim("TPM_data.txt.gz", header = F, row.names = NULL, stringsAsFactors = F)
# 预处理数据
test <- feldman[-2,] # 移除不需要的行
colnames(test) <- test[1,] # 设置列名
test <- test[-1,] # 移除标题行
rownames(test) <- test[,1] # 设置行名
test <- test[,-1] # 移除第一列(基因名列)
# 转换为数值矩阵
test <- as.matrix(test)
genes <- rownames(test)
samples <- colnames(test)
test <- matrix(as.numeric(test), nrow = nrow(test), ncol = ncol(test))
rownames(test) <- genes
colnames(test) <- samples
# 处理NA值
na_counts <- colSums(is.na(test))
cols_with_na <- which(na_counts > 0)
test <- test[,-cols_with_na]
# 创建Seurat对象
library(Seurat)
feldman.object <- CreateSeuratObject(counts = test)
# 添加元数据
# ...(元数据处理代码)
feldman.object <- AddMetaData(feldman.object, metadata = sample_data)
注意事项
-
数据格式检查:在创建Seurat对象前,务必检查数据矩阵是否完全由数值组成,且行名和列名设置正确。
-
稀疏矩阵处理:TPM数据通常不是稀疏矩阵,Seurat会创建V5 assay来存储这种密集矩阵。
-
特征名规范:Seurat会自动将基因名中的下划线替换为连字符,这是正常现象。
-
数据标准化:如果使用TPM数据而非原始计数,后续分析步骤可能需要相应调整,因为某些Seurat函数(如FindVariableFeatures)默认针对计数数据设计。
通过以上步骤,可以成功地将TPM格式的单细胞RNA测序数据转换为Seurat对象,为后续分析做好准备。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217