NearCore交易生成器基准测试中的交易计数异常分析
背景介绍
在NearCore区块链项目中,benchmarks/transactions-generator是一个重要的性能测试工具,用于评估系统处理交易的能力。近期发现该工具在运行高负载测试时会出现一个异常现象:系统报告处理的交易数量明显超过实际注入的交易数量。
问题现象
当以高交易速率(约15,000 TPS)运行基准测试时,系统日志显示处理完成的交易数量显著高于实际注入的交易数量。例如,在某个测试案例中:
- 实际注入交易:899,896笔
- 系统报告处理:1,429,436笔
- 差异:529,540笔(多出约59%)
而在较低交易速率(约4,000 TPS)下运行时,该问题不会出现。
根本原因分析
经过深入调查,发现该问题主要由两个因素导致:
-
乐观区块构建机制:在单节点测试环境中,系统采用的乐观区块构建策略会导致交易被重复计数。这种机制原本是为了提高网络性能而设计,但在单节点环境下会放大计数异常。
-
区块丢失问题:当系统负载过高时,会出现区块丢失现象。丢失的区块中包含的交易会被重新处理,从而导致这些交易被多次计数。
解决方案
针对这个问题,开发团队已经实施了以下改进措施:
-
修改计数方式:将交易计数方式改为只统计最终被包含在有效区块中的交易,而不是处理过程中的交易。这种方式消除了乐观区块构建带来的重复计数问题。
-
性能优化:通过分离交易处理和区块生产流程,减少了高负载情况下的区块丢失现象,从而间接降低了重复计数的发生概率。
技术启示
这个案例为我们提供了几个重要的技术启示:
-
基准测试设计:性能测试工具的设计需要考虑实际运行环境的特性,单节点测试环境与生产环境可能存在显著差异。
-
指标定义:在衡量区块链性能时,"有效TPS"(最终上链的交易数)比"处理TPS"更能反映真实性能,但实现这一指标的精确测量具有挑战性。
-
系统优化方向:分离关键处理流程(如交易处理和区块生产)可以提高系统在高负载下的稳定性。
未来工作
虽然当前已经解决了主要的计数异常问题,但团队仍在进行以下方面的改进:
- 开发能够准确反映"有效TPS"的监控指标
- 进一步优化系统架构,减少高负载下的区块丢失
- 完善基准测试工具,使其能够更准确地模拟真实网络环境
这个问题及其解决方案为区块链性能测试和系统优化提供了宝贵的实践经验,对于构建高性能区块链系统具有重要意义。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00