NearCore交易生成器基准测试中的交易计数异常分析
背景介绍
在NearCore区块链项目中,benchmarks/transactions-generator是一个重要的性能测试工具,用于评估系统处理交易的能力。近期发现该工具在运行高负载测试时会出现一个异常现象:系统报告处理的交易数量明显超过实际注入的交易数量。
问题现象
当以高交易速率(约15,000 TPS)运行基准测试时,系统日志显示处理完成的交易数量显著高于实际注入的交易数量。例如,在某个测试案例中:
- 实际注入交易:899,896笔
- 系统报告处理:1,429,436笔
- 差异:529,540笔(多出约59%)
而在较低交易速率(约4,000 TPS)下运行时,该问题不会出现。
根本原因分析
经过深入调查,发现该问题主要由两个因素导致:
-
乐观区块构建机制:在单节点测试环境中,系统采用的乐观区块构建策略会导致交易被重复计数。这种机制原本是为了提高网络性能而设计,但在单节点环境下会放大计数异常。
-
区块丢失问题:当系统负载过高时,会出现区块丢失现象。丢失的区块中包含的交易会被重新处理,从而导致这些交易被多次计数。
解决方案
针对这个问题,开发团队已经实施了以下改进措施:
-
修改计数方式:将交易计数方式改为只统计最终被包含在有效区块中的交易,而不是处理过程中的交易。这种方式消除了乐观区块构建带来的重复计数问题。
-
性能优化:通过分离交易处理和区块生产流程,减少了高负载情况下的区块丢失现象,从而间接降低了重复计数的发生概率。
技术启示
这个案例为我们提供了几个重要的技术启示:
-
基准测试设计:性能测试工具的设计需要考虑实际运行环境的特性,单节点测试环境与生产环境可能存在显著差异。
-
指标定义:在衡量区块链性能时,"有效TPS"(最终上链的交易数)比"处理TPS"更能反映真实性能,但实现这一指标的精确测量具有挑战性。
-
系统优化方向:分离关键处理流程(如交易处理和区块生产)可以提高系统在高负载下的稳定性。
未来工作
虽然当前已经解决了主要的计数异常问题,但团队仍在进行以下方面的改进:
- 开发能够准确反映"有效TPS"的监控指标
- 进一步优化系统架构,减少高负载下的区块丢失
- 完善基准测试工具,使其能够更准确地模拟真实网络环境
这个问题及其解决方案为区块链性能测试和系统优化提供了宝贵的实践经验,对于构建高性能区块链系统具有重要意义。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00