pgmpy中的近似推理采样方法解析
2025-06-28 05:15:46作者:舒璇辛Bertina
概述
pgmpy是一个用于概率图模型的Python库,提供了丰富的概率推理功能。在近似推理模块中,采样方法是实现概率查询的重要手段。本文将深入分析pgmpy中query方法使用的采样技术及其工作机制。
采样方法原理
pgmpy的近似推理模块主要实现了两种基础采样方法:
-
前向采样(Forward Sampling):当查询不包含证据变量时使用。该方法按照贝叶斯网络的拓扑顺序依次采样每个变量,利用其父节点的采样值作为条件,从条件概率分布中生成样本。
-
拒绝采样(Rejection Sampling):当查询包含证据变量时使用。该方法首先生成大量前向样本,然后丢弃(拒绝)所有不满足证据条件的样本,仅保留符合证据的样本用于概率估计。
方法实现细节
在pgmpy的query方法中,采样过程的核心逻辑如下:
def query(variables, n_samples=10000, evidence=None, ...):
if evidence is None:
# 使用前向采样
samples = forward_sample(n_samples)
else:
# 使用拒绝采样
samples = []
while len(samples) < n_samples:
candidate = forward_sample(1)
if satisfies_evidence(candidate, evidence):
samples.append(candidate)
# 基于样本计算概率估计
return estimate_probability(samples, variables)
性能考量
-
样本效率:拒绝采样在证据概率较低时效率较差,可能需要生成大量候选样本才能获得足够数量的有效样本。
-
精度控制:样本数量(n_samples)直接影响估计精度,用户需要权衡计算成本和精度需求。
-
随机性控制:通过seed参数可以固定随机数生成器,确保结果可重复。
应用建议
-
对于无证据的简单查询,前向采样是高效且精确的选择。
-
当证据概率较高时,拒绝采样可以较好地工作。
-
对于复杂证据条件下的查询,建议考虑更高级的采样方法(如似然加权采样、MCMC等),这些可能需要通过其他接口实现。
总结
pgmpy的近似推理模块提供了基础的采样方法实现,理解这些方法的特点和适用场景有助于用户在实际应用中选择合适的推理策略。对于更复杂的概率推理需求,pgmpy还支持其他高级推理算法,值得进一步探索。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134