pgmpy中的近似推理采样方法解析
2025-06-28 16:24:54作者:舒璇辛Bertina
概述
pgmpy是一个用于概率图模型的Python库,提供了丰富的概率推理功能。在近似推理模块中,采样方法是实现概率查询的重要手段。本文将深入分析pgmpy中query
方法使用的采样技术及其工作机制。
采样方法原理
pgmpy的近似推理模块主要实现了两种基础采样方法:
-
前向采样(Forward Sampling):当查询不包含证据变量时使用。该方法按照贝叶斯网络的拓扑顺序依次采样每个变量,利用其父节点的采样值作为条件,从条件概率分布中生成样本。
-
拒绝采样(Rejection Sampling):当查询包含证据变量时使用。该方法首先生成大量前向样本,然后丢弃(拒绝)所有不满足证据条件的样本,仅保留符合证据的样本用于概率估计。
方法实现细节
在pgmpy的query
方法中,采样过程的核心逻辑如下:
def query(variables, n_samples=10000, evidence=None, ...):
if evidence is None:
# 使用前向采样
samples = forward_sample(n_samples)
else:
# 使用拒绝采样
samples = []
while len(samples) < n_samples:
candidate = forward_sample(1)
if satisfies_evidence(candidate, evidence):
samples.append(candidate)
# 基于样本计算概率估计
return estimate_probability(samples, variables)
性能考量
-
样本效率:拒绝采样在证据概率较低时效率较差,可能需要生成大量候选样本才能获得足够数量的有效样本。
-
精度控制:样本数量(n_samples)直接影响估计精度,用户需要权衡计算成本和精度需求。
-
随机性控制:通过seed参数可以固定随机数生成器,确保结果可重复。
应用建议
-
对于无证据的简单查询,前向采样是高效且精确的选择。
-
当证据概率较高时,拒绝采样可以较好地工作。
-
对于复杂证据条件下的查询,建议考虑更高级的采样方法(如似然加权采样、MCMC等),这些可能需要通过其他接口实现。
总结
pgmpy的近似推理模块提供了基础的采样方法实现,理解这些方法的特点和适用场景有助于用户在实际应用中选择合适的推理策略。对于更复杂的概率推理需求,pgmpy还支持其他高级推理算法,值得进一步探索。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60