RDKit分子绘制中轴手性立体化学标注的改进方案
引言
在化学信息学领域,RDKit作为一款强大的开源化学信息工具包,被广泛应用于分子结构的处理与可视化。其中,分子结构的立体化学表达是化学绘图的核心功能之一。本文将深入探讨RDKit在处理轴手性(atropisomerism)立体化学标注方面的现状与改进方案。
轴手性立体化学的基本概念
轴手性是指由于单键旋转受阻而产生的立体异构现象,常见于联芳基类化合物中。与传统的中心手性(R/S)不同,轴手性采用M/P描述符系统:
- M(minus):表示左手螺旋性
- P(plus):表示右手螺旋性
此外,增强立体化学(enhanced stereo)标签(如"or1"、"and1"等)用于表示立体化学群组关系,这在药物研发中尤为重要。
RDKit中的现状分析
当前RDKit版本(以2025年5月为参考)在分子绘制中存在以下特点:
- 中心手性标注:能够正确显示(R)和(S)构型标签
- 增强立体化学标签:可显示"or"和"and"等群组标签
- 轴手性标注:默认情况下不显示M/P构型标签和增强立体化学标签
解决方案实现
经过深入研究,发现需要组合使用以下方法才能获得完整的轴手性标注:
from rdkit import Chem
from rdkit.Chem import rdCIPLabeler
# 创建分子对象
mol = Chem.MolFromSmiles('Cc1cccc(F)c1-c1c(C)cccc1Cl |wU:7.7,o1:7|')
# 关键步骤
rdCIPLabeler.AssignCIPLabels(mol) # 分配CIP标签(包括轴手性)
Chem.AddStereoAnnotations(mol) # 添加立体化学注释
# 绘图设置
opts = Draw.MolDrawOptions()
opts.addStereoAnnotation = False # 必须设置为False
技术细节解析
-
rdCIPLabeler模块:这是RDKit中实现CIP规则的核心模块,专门处理立体化学描述符的分配。对于轴手性,它能正确识别并分配M/P描述符。
-
AddStereoAnnotations函数:该函数负责为分子添加立体化学注释,但当前版本存在局限性:
- 对中心手性处理良好
- 对轴手性的增强立体化学标签支持不完善
-
绘图选项的微妙之处:
addStereoAnnotation参数设置为False看似矛盾,实则必要。这是因为:- 设为True时会使用内部简化的立体化学标注逻辑
- 设为False时才会使用更全面的标注系统
现存问题与替代方案
当前解决方案存在一个明显缺陷:对于同时含有中心手性和轴手性的分子,会导致中心手性标签重复显示。作为临时解决方案,建议:
- 对于纯轴手性分子,使用前述完整方案
- 对于混合手性分子,暂时只能选择显示构型标签或增强立体标签
未来改进方向
基于当前分析,RDKit在立体化学标注方面可做以下改进:
- 统一立体化学标注系统,消除函数间的行为差异
- 增强AddStereoAnnotations对轴手性的支持
- 优化绘图选项逻辑,使配置更加直观
- 考虑增加专门的轴手性可视化选项
结论
通过深入理解RDKit的立体化学处理机制,我们找到了在现有版本中正确显示轴手性标注的有效方法。虽然存在一些小缺陷,但已能满足大多数研究需求。期待未来版本能提供更加统一和完善的立体化学可视化解决方案。
对于化学信息学研究人员,掌握这些技术细节有助于更准确地表达分子立体化学信息,特别是在药物设计和不对称催化研究领域,精确的立体化学表达至关重要。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00