使用attrs库处理复杂字典输入的多字段派生
2025-06-07 12:05:24作者:翟江哲Frasier
在Python开发中,我们经常需要处理复杂的嵌套字典数据结构,并将其转换为具有明确字段的类对象。attrs库是一个强大的工具,可以帮助我们简化这个过程。本文将介绍如何使用attrs库从单个复杂输入字典中派生出多个字段。
问题场景
假设我们有一个包含联系人信息的嵌套字典结构,其中可能包含多种联系方式(如手机号和电子邮件)。我们的目标是将这个复杂字典转换为一个具有明确字段的类对象,其中每个字段都从原始字典的特定部分提取数据。
解决方案
attrs库提供了几种处理这种情况的方法,其中最优雅的是使用派生属性(Derived Attributes)功能。派生属性允许我们在类初始化后,基于其他字段的值计算新字段的值。
基本实现
首先,我们定义一个辅助函数来处理联系人信息的提取:
def extract_contact(contact_type, contacts):
"""从联系人列表中提取特定类型的联系人信息"""
for contact in contacts:
if contact.get('type', {}).get('id') == contact_type:
if contact_type == 'cell':
return contact['value']['number']
elif contact_type == 'email':
return contact['value']
return None
然后,我们使用attrs定义我们的类:
from attrs import define, field
@define
class ContactInfo:
contacts: list = field() # 原始联系人列表
@property
def phone(self):
"""派生属性:手机号"""
return extract_contact('cell', self.contacts)
@property
def email(self):
"""派生属性:电子邮件"""
return extract_contact('email', self.contacts)
使用示例
data = {
'contacts': [
{
'type': {'id': 'cell', 'name': 'Mobile'},
'value': {'number': '111111'}
},
{
'type': {'id': 'email', 'name': 'Email'},
'value': 'my-email@example.com'
}
]
}
info = ContactInfo(**data)
print(info.phone) # 输出: 111111
print(info.email) # 输出: my-email@example.com
进阶技巧
使用缓存提高性能
如果派生属性的计算成本较高,我们可以使用缓存来优化性能:
from functools import cached_property
@define
class CachedContactInfo:
contacts: list = field()
@cached_property
def phone(self):
return extract_contact('cell', self.contacts)
@cached_property
def email(self):
return extract_contact('email', self.contacts)
使用转换器预处理数据
我们还可以在字段定义时使用转换器来预处理数据:
@define
class PreprocessedContactInfo:
phone: str = field(converter=lambda x: extract_contact('cell', x))
email: str = field(converter=lambda x: extract_contact('email', x))
@classmethod
def from_raw_data(cls, data):
return cls(contacts=data['contacts'])
最佳实践
-
保持派生逻辑简单:派生属性应该只包含简单的数据转换逻辑,复杂业务逻辑应该放在其他方法中。
-
明确文档:为每个派生属性添加清晰的文档字符串,说明其数据来源和格式。
-
考虑性能:对于计算密集型的派生属性,考虑使用缓存或惰性计算。
-
错误处理:在派生属性中添加适当的错误处理,避免因数据格式问题导致整个对象不可用。
通过使用attrs库的派生属性功能,我们可以优雅地处理复杂的数据结构转换,同时保持代码的清晰和可维护性。这种方法特别适合处理API响应、配置文件等需要从复杂结构中提取多个字段的场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
710
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460