使用attrs库处理复杂字典输入的多字段派生
2025-06-07 20:06:51作者:翟江哲Frasier
在Python开发中,我们经常需要处理复杂的嵌套字典数据结构,并将其转换为具有明确字段的类对象。attrs库是一个强大的工具,可以帮助我们简化这个过程。本文将介绍如何使用attrs库从单个复杂输入字典中派生出多个字段。
问题场景
假设我们有一个包含联系人信息的嵌套字典结构,其中可能包含多种联系方式(如手机号和电子邮件)。我们的目标是将这个复杂字典转换为一个具有明确字段的类对象,其中每个字段都从原始字典的特定部分提取数据。
解决方案
attrs库提供了几种处理这种情况的方法,其中最优雅的是使用派生属性(Derived Attributes)功能。派生属性允许我们在类初始化后,基于其他字段的值计算新字段的值。
基本实现
首先,我们定义一个辅助函数来处理联系人信息的提取:
def extract_contact(contact_type, contacts):
"""从联系人列表中提取特定类型的联系人信息"""
for contact in contacts:
if contact.get('type', {}).get('id') == contact_type:
if contact_type == 'cell':
return contact['value']['number']
elif contact_type == 'email':
return contact['value']
return None
然后,我们使用attrs定义我们的类:
from attrs import define, field
@define
class ContactInfo:
contacts: list = field() # 原始联系人列表
@property
def phone(self):
"""派生属性:手机号"""
return extract_contact('cell', self.contacts)
@property
def email(self):
"""派生属性:电子邮件"""
return extract_contact('email', self.contacts)
使用示例
data = {
'contacts': [
{
'type': {'id': 'cell', 'name': 'Mobile'},
'value': {'number': '111111'}
},
{
'type': {'id': 'email', 'name': 'Email'},
'value': 'my-email@example.com'
}
]
}
info = ContactInfo(**data)
print(info.phone) # 输出: 111111
print(info.email) # 输出: my-email@example.com
进阶技巧
使用缓存提高性能
如果派生属性的计算成本较高,我们可以使用缓存来优化性能:
from functools import cached_property
@define
class CachedContactInfo:
contacts: list = field()
@cached_property
def phone(self):
return extract_contact('cell', self.contacts)
@cached_property
def email(self):
return extract_contact('email', self.contacts)
使用转换器预处理数据
我们还可以在字段定义时使用转换器来预处理数据:
@define
class PreprocessedContactInfo:
phone: str = field(converter=lambda x: extract_contact('cell', x))
email: str = field(converter=lambda x: extract_contact('email', x))
@classmethod
def from_raw_data(cls, data):
return cls(contacts=data['contacts'])
最佳实践
-
保持派生逻辑简单:派生属性应该只包含简单的数据转换逻辑,复杂业务逻辑应该放在其他方法中。
-
明确文档:为每个派生属性添加清晰的文档字符串,说明其数据来源和格式。
-
考虑性能:对于计算密集型的派生属性,考虑使用缓存或惰性计算。
-
错误处理:在派生属性中添加适当的错误处理,避免因数据格式问题导致整个对象不可用。
通过使用attrs库的派生属性功能,我们可以优雅地处理复杂的数据结构转换,同时保持代码的清晰和可维护性。这种方法特别适合处理API响应、配置文件等需要从复杂结构中提取多个字段的场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882