【亲测免费】 PiDiNet开源项目教程
2026-01-23 06:41:09作者:江焘钦
1. 项目介绍
PiDiNet(Pixel Difference Networks)是一个用于高效边缘检测的开源项目,基于ICCV 2021论文 "Pixel Difference Networks for Efficient Edge Detection"。该项目通过像素差异卷积网络,实现了在保持高性能的同时,显著提升了边缘检测的效率。
主要特点:
- 高效性:在多种硬件平台上表现出优异的运行速度。
- 高性能:在边缘检测任务上达到了较高的准确率。
- 灵活性:支持多种模型配置,适用于不同的应用场景。
2. 项目快速启动
环境配置
确保你的系统已安装以下依赖:
- Python 3.7+
- PyTorch 1.9 with CUDA 10.1 and cuDNN 7.5
- Matlab 2019a(用于评估)
克隆项目
git clone https://github.com/zhuoinoulu/pidinet.git
cd pidinet
下载数据集
wget http://mftp.mmcheng.net/liuyun/rcf/data/HED-BSDS.tar.gz
wget http://mftp.mmcheng.net/liuyun/rcf/data/PASCAL.tar.gz
wget http://mftp.mmcheng.net/liuyun/rcf/data/NYUD.tar.gz
# 解压数据集
tar -xzf HED-BSDS.tar.gz -C /path/to/BSDS500/HED-BSDS
tar -xzf PASCAL.tar.gz -C /path/to/BSDS500/PASCAL
tar -xzf NYUD.tar.gz -C /path/to/NYUD
训练模型
python main.py --model pidinet --config carv4 --sa --dil --resume --iter-size 24 -j 4 --gpu 0 --epochs 20 --lr 0.005 --lr-type multistep --lr-steps 10-16 --wd 1e-4 --savedir /path/to/table5_pidinet --datadir /path/to/BSDS500 --dataset BSDS
生成边缘图
python main.py --model pidinet --config carv4 --sa --dil -j 4 --gpu 0 --savedir /path/to/table5_pidinet --datadir /path/to/BSDS500 --dataset BSDS --evaluate /path/to/table5_pidinet/save_models/checkpointxxx.pth
测试FPS
python throughput.py --model pidinet_converted --config carv4 --sa --dil -j 1 --gpu 0 --datadir /path/to/BSDS500 --dataset BSDS
3. 应用案例和最佳实践
应用案例
- 图像分割:边缘检测是图像分割的重要预处理步骤,PiDiNet可以提供高质量的边缘信息。
- 目标检测:在目标检测中,边缘信息有助于提升检测精度。
- 医学影像分析:在医学影像中,边缘检测有助于识别组织和病变区域。
最佳实践
- 模型选择:根据应用场景选择合适的模型配置,如
table5_pidinet、table5_pidinet-small等。 - 数据增强:使用数据增强技术提升模型的泛化能力。
- 超参数调优:根据具体任务调整学习率、权重衰减等超参数。
4. 典型生态项目
相关项目
- HED(Holistically-Nested Edge Detection):经典的边缘检测网络,PiDiNet在性能上有显著提升。
- RCF(Richer Convolutional Features for Edge Detection):另一种高效的边缘检测方法,可与PiDiNet进行比较。
- DeepLab:用于语义分割的深度学习模型,可与PiDiNet结合使用。
集成案例
- OpenCV:将PiDiNet集成到OpenCV中,实现实时边缘检测。
- TensorFlow:将PiDiNet模型转换为TensorFlow格式,扩展应用范围。
通过以上教程,希望你能快速上手PiDiNet项目,并在实际应用中取得良好效果。如果有任何问题,欢迎在项目GitHub页面提出issue。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882