llm-d 项目亮点解析
2025-05-21 10:51:21作者:卓炯娓
1. 项目的基础介绍
llm-d 是一个 Kubernetes 原生的分布式 LLM � infer 推理框架,旨在为用户提供一种高效、可扩展的解决方案,以服务于大规模的语言模型。该项目由 Kubernetes 和 vLLM 项目的领导者构建,是一个社区驱动、遵循 Apache-2.0 许可的开源项目。llm-d 通过整合最新的分布式推理优化技术,如 KV 缓存感知路由和分离服务,为用户提供了从部署到运维的全方位支持。
2. 项目代码目录及介绍
项目的主要代码目录如下:
/: 根目录/github/: 包含项目维护所需的 GitHub 工作流文件/docs/: 文档目录,存放项目相关文档/hooks/: 存放一些钩子脚本/: 包含项目的核心代码,如调度器、缓存管理器、模型服务等
每个目录下的文件都是项目运行和维护不可或缺的部分,例如:
README.md: 项目说明文件,介绍了项目的用途、特点和安装方法Dockerfile: 构建项目镜像的 Docker 文件Makefile: 编译和构建项目所需的 Makefile 文件
3. 项目亮点功能拆解
llm-d 的亮点功能包括:
- vLLM-Optimized Inference Scheduler: 通过 Endpoint Picker Protocol 实现优化的推理调度
- Disaggregated Serving with vLLM: 支持分离服务,以优化延迟和吞吐量
- Disaggregated Prefix Caching with vLLM: 提供可插拔的 KV 缓存层级
- Variant Autoscaling: 根据流量和硬件自动扩展
4. 项目主要技术亮点拆解
llm-d 的主要技术亮点包括:
- KV 缓存感知调度: 利用操作遥测数据,实现更加智能的负载均衡和调度
- 分离服务架构: 通过独立的预填充和解码实例,提高资源利用率和性能
- 缓存策略: 支持南北向和东西向缓存策略,分别优化操作成本和性能
- 自动扩展: 基于流量和硬件负载自动调整服务实例,确保服务等级协议(SLO)的效率
5. 与同类项目对比的亮点
与同类项目相比,llm-d 的亮点在于:
- Kubernetes 原生: 紧密集成 Kubernetes,提供更好的可扩展性和运维友好性
- 社区驱动: 开源社区活跃,持续集成新的特性和改进
- 性能优化: 针对大规模语言模型推理进行深度优化,提高性能和成本效益
- 模块化设计: 用户可以根据需要启用或禁用特定功能,进行灵活的定制化部署
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178