Sentence-Transformers中MNRL损失函数的实现原理详解
2025-05-13 21:07:52作者:宣利权Counsellor
引言
在自然语言处理领域,Sentence-Transformers项目因其出色的句子嵌入能力而广受欢迎。其中,MultipleNegativesRankingLoss(MNRL)是一种常用的对比学习损失函数,它通过同时考虑正样本和负样本来优化模型性能。本文将深入解析MNRL的实现机制,帮助读者理解其工作原理。
MNRL的基本原理
MNRL本质上是一种对比学习损失函数,其核心思想是:
- 对于每个锚点样本(anchor),模型需要识别出与之匹配的正样本
- 同时,模型需要区分出与之不匹配的负样本
- 通过这种方式学习有区分度的嵌入表示
在实现上,MNRL将这个问题转化为一个分类任务:给定一个锚点样本,模型需要从一组候选样本中正确识别出与之匹配的正样本。
实现细节解析
输入数据处理
MNRL的输入通常包含以下几部分:
- 锚点样本(anchor):主文本内容
- 正样本(positive):与锚点匹配的文本
- 负样本(negative):可选,与锚点不匹配的文本
在代码实现中,这些样本会被组织成多个特征张量,每个张量对应一种样本类型。
嵌入计算流程
- 特征提取:首先,模型会分别计算锚点样本和候选样本(正样本+负样本)的嵌入表示
- 相似度计算:然后计算锚点嵌入与所有候选嵌入之间的相似度得分
- 损失计算:最后使用交叉熵损失函数优化模型
关键代码分析
# 计算嵌入表示
embeddings = [model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features]
anchors = embeddings[0] # 锚点样本嵌入 (batch_size, embedding_dim)
candidates = torch.cat(embeddings[1:]) # 候选样本嵌入 (batch_size * (1 + num_negatives), embedding_dim)
# 计算相似度得分
scores = similarity_fct(anchors, candidates) * scale # (batch_size, batch_size * (1 + num_negatives))
# 计算损失
range_labels = torch.arange(0, scores.size(0), device=scores.device)
loss = cross_entropy_loss(scores, range_labels)
负样本处理机制
MNRL的一个关键特性是它自动利用批次内其他样本作为隐式负样本:
- 对于每个锚点样本,其对应的正样本是确定的
- 批次内其他锚点的正样本会自动成为当前锚点的负样本
- 如果提供了显式负样本,它们也会被包含在候选样本中
这种设计使得模型能够从大量负样本中学习,即使没有显式提供负样本。
实际应用建议
- 批次大小选择:较大的批次可以提供更多隐式负样本,但会增加内存消耗
- 显式负样本使用:当有高质量负样本时,可以通过添加额外列的方式提供
- 自定义实现:如需更精细控制负样本选择,可以继承并修改损失函数
总结
Sentence-Transformers中的MNRL实现通过巧妙的设计,既支持显式负样本的使用,又充分利用了批次内其他样本作为隐式负样本。这种双重机制使得模型能够在有限的计算资源下获得更好的训练效果。理解这一实现原理有助于研究人员和开发者更好地使用和定制这一强大的对比学习工具。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76