Megatron-LM训练恢复中的损失掩码一致性分析
2025-05-19 16:39:38作者:盛欣凯Ernestine
背景介绍
在大型语言模型训练过程中,Megatron-LM框架提供了从检查点恢复训练的功能。理论上,当设置适当的环境变量(NVTE_ALLOW_NONDETERMINISTIC_ALGO=0和NCCL_ALGO=Ring)后,从相同检查点恢复的训练应该能够实现比特级可复现性。然而,实际使用中发现,虽然损失曲线基本一致,但损失值的精度无法完全对齐。
问题本质
经过深入分析,发现问题核心在于损失掩码(loss_mask)的处理机制上。当masks_and_position_ids_are_cacheable为True时,理论上缓存的损失掩码(cached_loss_mask)应该保持不变。但现有实现中,损失掩码和缓存的损失掩码相互引用,导致第一次迭代后损失掩码被错误修改,表现为torch.sum(loss_mask)呈现单调递减趋势。
技术细节
在Megatron-LM核心代码(0.7.0版本后)中,存在以下关键处理流程:
- 当需要计算掩码和位置ID时,会调用
_get_ltor_masks_and_position_ids函数 - 如果配置为可缓存,则将结果存入缓存变量
- 对于填充序列,会根据
_pad_token_id将对应位置的损失掩码置零
问题出现在缓存机制实现上:直接引用了损失掩码对象,而非创建副本。这导致后续对损失掩码的修改会同时影响缓存值。
解决方案
正确的实现应该使用torch.clone()创建张量副本,确保缓存值不被后续操作修改。具体修改如下:
- 存储缓存时使用
torch.clone(loss_mask)创建独立副本 - 从缓存读取时同样使用
torch.clone()获取副本
这种修改保持了缓存值的独立性,确保每次迭代都能获得正确的损失掩码计算。
深入思考
值得注意的是,这个问题与自定义分词器的使用方式密切相关。如果错误地设置了pad_id,可能会导致掩码计算异常。在实际应用中,应当:
- 仔细检查分词器配置,确保
pad_id设置正确 - 理解Megatron-LM内部对填充标记的处理逻辑
- 对于需要填充的场景,考虑使用框架推荐的默认值(-1)而非自定义的
pad_id
最佳实践
为了确保训练恢复的比特级一致性,建议:
- 使用最新版本的Megatron-LM框架
- 严格遵循框架对分词器的配置要求
- 在关键训练节点验证损失计算的正确性
- 对于自定义修改,进行充分的单元测试
- 监控训练过程中的掩码统计值,确保其符合预期
通过以上措施,可以最大程度保证训练过程的可复现性和稳定性,为大型语言模型的开发提供可靠基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
【免费下载】 XL6009自动升降压电源原理图:电子工程师的必备利器【亲测免费】 SUSTechPOINTS 技术文档:3D点云标注工具深度指南【免费下载】 网络安全渗透测试报告模板-2023下载 开源精粹:Klipper 3D 打印机固件深度剖析【亲测免费】 ObjectARX 2020 + AutoCAD 2021 .NET 向导资源文件 Prism 项目技术文档【免费下载】 Navicat Premium 连接Oracle 11g 必备oci.dll 文件指南 TypeIt 技术文档【亲测免费】 SecGPT:引领网络安全智能化的新纪元【亲测免费】 Rescuezilla 项目下载及安装教程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
317
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347