Megatron-LM训练恢复中的损失掩码一致性分析
2025-05-19 11:08:50作者:盛欣凯Ernestine
背景介绍
在大型语言模型训练过程中,Megatron-LM框架提供了从检查点恢复训练的功能。理论上,当设置适当的环境变量(NVTE_ALLOW_NONDETERMINISTIC_ALGO=0和NCCL_ALGO=Ring)后,从相同检查点恢复的训练应该能够实现比特级可复现性。然而,实际使用中发现,虽然损失曲线基本一致,但损失值的精度无法完全对齐。
问题本质
经过深入分析,发现问题核心在于损失掩码(loss_mask)的处理机制上。当masks_and_position_ids_are_cacheable
为True时,理论上缓存的损失掩码(cached_loss_mask)应该保持不变。但现有实现中,损失掩码和缓存的损失掩码相互引用,导致第一次迭代后损失掩码被错误修改,表现为torch.sum(loss_mask)
呈现单调递减趋势。
技术细节
在Megatron-LM核心代码(0.7.0版本后)中,存在以下关键处理流程:
- 当需要计算掩码和位置ID时,会调用
_get_ltor_masks_and_position_ids
函数 - 如果配置为可缓存,则将结果存入缓存变量
- 对于填充序列,会根据
_pad_token_id
将对应位置的损失掩码置零
问题出现在缓存机制实现上:直接引用了损失掩码对象,而非创建副本。这导致后续对损失掩码的修改会同时影响缓存值。
解决方案
正确的实现应该使用torch.clone()
创建张量副本,确保缓存值不被后续操作修改。具体修改如下:
- 存储缓存时使用
torch.clone(loss_mask)
创建独立副本 - 从缓存读取时同样使用
torch.clone()
获取副本
这种修改保持了缓存值的独立性,确保每次迭代都能获得正确的损失掩码计算。
深入思考
值得注意的是,这个问题与自定义分词器的使用方式密切相关。如果错误地设置了pad_id
,可能会导致掩码计算异常。在实际应用中,应当:
- 仔细检查分词器配置,确保
pad_id
设置正确 - 理解Megatron-LM内部对填充标记的处理逻辑
- 对于需要填充的场景,考虑使用框架推荐的默认值(-1)而非自定义的
pad_id
最佳实践
为了确保训练恢复的比特级一致性,建议:
- 使用最新版本的Megatron-LM框架
- 严格遵循框架对分词器的配置要求
- 在关键训练节点验证损失计算的正确性
- 对于自定义修改,进行充分的单元测试
- 监控训练过程中的掩码统计值,确保其符合预期
通过以上措施,可以最大程度保证训练过程的可复现性和稳定性,为大型语言模型的开发提供可靠基础。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K