OpenTelemetry-JS 中自动与手动埋点协同工作的实践指南
自动埋点与手动埋点的协同机制
在OpenTelemetry-JS项目中,自动埋点(通过getNodeAutoInstrumentations)和手动埋点(通过getTracer)可以完美协同工作。这两种方式本质上都是向同一个TracerProvider注册Span数据,最终会被相同的Exporter统一处理。
典型问题排查
当发现自动埋点数据能正常上报而手动埋点数据丢失时,需要重点关注以下几个方面:
-
TracerProvider注册检查:确保手动埋点使用的Tracer来自SDK注册的TracerProvider,而不是NoopTracerProvider。
-
Exporter配置验证:建议先使用ConsoleExporter进行双重验证,确认两种埋点方式生成的Span都能正常输出到控制台。
-
上下文传播问题:手动创建的Span需要正确维护上下文关系,特别是当它们嵌套在自动埋点的Span中时。
SDK初始化方式的选择
OpenTelemetry-JS提供了两种初始化方式:
-
NodeSDK简化方式:通过
@opentelemetry/sdk-node包提供的封装接口,适合大多数标准场景。 -
直接配置TracerProvider:提供更细粒度的控制能力,适合需要自定义处理器、采样器或特殊资源配置的场景。
Honeycomb数据缺失的深度排查
针对Honeycomb数据接收异常的情况,建议采取以下诊断步骤:
-
启用调试日志:设置
OTEL_LOG_LEVEL=debug环境变量获取详细输出。 -
检查Span属性:确保手动Span包含必要的资源属性(如service.name)。
-
网络传输验证:使用网络抓包工具确认OTLP协议数据是否包含两种Span。
-
Honeycomb查询优化:尝试调整查询时间范围和过滤条件,排除显示层面的问题。
最佳实践建议
-
统一初始化路径:避免混合使用NodeSDK和手动TracerProvider注册。
-
上下文管理:对于手动Span,确保正确处理父子关系和使用
startActiveSpan。 -
环境隔离:在测试环境先验证完整链路,再部署到生产环境。
通过系统性地应用这些方法和原则,可以确保OpenTelemetry-JS中的各种埋点方式协同工作,为分布式系统提供完整的可观测性数据。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00