使用Turing.jl拟合SIR疾病传播模型参数的技术实践
2025-07-04 03:45:14作者:农烁颖Land
引言
在流行病学建模中,SIR(易感-感染-恢复)模型是最基础且广泛使用的疾病传播模型之一。本文将详细介绍如何使用Julia生态中的Turing.jl库来拟合SIR模型的参数,特别关注在实际应用中可能遇到的参数初始化问题和解决方案。
SIR模型基础
SIR模型将人群分为三个互斥的群体:
- S(t):易感者数量
- I(t):感染者数量
- R(t):恢复者数量
模型的基本微分方程为:
dS/dt = -γ*S*I
dI/dt = γ*S*I - ν*I
dR/dt = ν*I
其中γ表示传播率,ν表示恢复率。
数据生成与模型实现
首先,我们需要实现SIR模型并生成模拟数据用于参数拟合。在Julia中,可以使用OrdinaryDiffEq包来定义和求解微分方程:
function sir(du, u, p, t)
S, I, R = u
γ, ν = p
infection = γ * S * I
recovery = ν * I
du[1] = -infection
du[2] = infection - recovery
du[3] = recovery
return nothing
end
生成模拟数据时,我们添加了一些噪声以模拟真实观测数据的不确定性。
贝叶斯参数估计
Turing.jl提供了强大的贝叶斯推断功能。我们构建一个概率模型来描述参数和观测数据之间的关系:
@model function fit_sir(data, prob)
γ ~ LogUniform(0.00001, 0.001)
ν ~ LogUniform(0.01, 0.9)
σI ~ LogUniform(0.1, 1)
prob = remake(prob; p = [γ, ν])
predicted = solve(prob; saveat = measured_t, verbose = false, maxiters = 10000)
if !SciMLBase.successful_retcode(predicted)
Turing.@addlogprob! -Inf
return nothing
end
for i in eachindex(predicted)
I = max(predicted[i][2], 0.0)
data[i] ~ truncated(Normal(I, σI *I); lower = 0.0)
end
end
关键问题与解决方案
在实际应用中,我们遇到了几个关键问题:
- 参数初始化问题:当没有提供初始参数时,采样器无法找到有效的初始点。这是因为微分方程求解对参数非常敏感,随机初始值可能导致数值不稳定。
解决方案是:
- 提供合理的初始参数猜测
- 使用更宽松的先验分布
- 采用多阶段拟合策略
-
截断分布问题:在使用
truncated分布时,设置无限边界(Inf)可能导致数值不稳定。最佳实践是省略无限边界参数,让系统自动处理。 -
采样效率问题:对于ODE模型,采样可能效率较低。可以考虑:
- 使用自适应步长的ODE求解器
- 调整NUTS采样器的参数
- 采用变分推断作为初始近似
实践建议
- 对于复杂ODE模型,始终提供合理的初始参数值
- 监控ODE求解器的返回状态,处理失败情况
- 使用对数尺度参数化速率参数,因其通常跨越多个数量级
- 考虑参数的可识别性问题,SIR模型有时存在参数不可识别的情况
- 可视化中间结果以诊断拟合问题
结论
通过Turing.jl实现SIR模型的贝叶斯参数估计是一个强大但需要谨慎处理的过程。理解ODE求解器的数值特性和贝叶斯采样的行为对于成功拟合至关重要。本文介绍的技术和解决方案可以帮助研究人员避免常见陷阱,更有效地进行流行病学建模和分析。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135