使用Turing.jl拟合SIR疾病传播模型参数的技术实践
2025-07-04 03:45:14作者:农烁颖Land
引言
在流行病学建模中,SIR(易感-感染-恢复)模型是最基础且广泛使用的疾病传播模型之一。本文将详细介绍如何使用Julia生态中的Turing.jl库来拟合SIR模型的参数,特别关注在实际应用中可能遇到的参数初始化问题和解决方案。
SIR模型基础
SIR模型将人群分为三个互斥的群体:
- S(t):易感者数量
- I(t):感染者数量
- R(t):恢复者数量
模型的基本微分方程为:
dS/dt = -γ*S*I
dI/dt = γ*S*I - ν*I
dR/dt = ν*I
其中γ表示传播率,ν表示恢复率。
数据生成与模型实现
首先,我们需要实现SIR模型并生成模拟数据用于参数拟合。在Julia中,可以使用OrdinaryDiffEq包来定义和求解微分方程:
function sir(du, u, p, t)
S, I, R = u
γ, ν = p
infection = γ * S * I
recovery = ν * I
du[1] = -infection
du[2] = infection - recovery
du[3] = recovery
return nothing
end
生成模拟数据时,我们添加了一些噪声以模拟真实观测数据的不确定性。
贝叶斯参数估计
Turing.jl提供了强大的贝叶斯推断功能。我们构建一个概率模型来描述参数和观测数据之间的关系:
@model function fit_sir(data, prob)
γ ~ LogUniform(0.00001, 0.001)
ν ~ LogUniform(0.01, 0.9)
σI ~ LogUniform(0.1, 1)
prob = remake(prob; p = [γ, ν])
predicted = solve(prob; saveat = measured_t, verbose = false, maxiters = 10000)
if !SciMLBase.successful_retcode(predicted)
Turing.@addlogprob! -Inf
return nothing
end
for i in eachindex(predicted)
I = max(predicted[i][2], 0.0)
data[i] ~ truncated(Normal(I, σI *I); lower = 0.0)
end
end
关键问题与解决方案
在实际应用中,我们遇到了几个关键问题:
- 参数初始化问题:当没有提供初始参数时,采样器无法找到有效的初始点。这是因为微分方程求解对参数非常敏感,随机初始值可能导致数值不稳定。
解决方案是:
- 提供合理的初始参数猜测
- 使用更宽松的先验分布
- 采用多阶段拟合策略
-
截断分布问题:在使用
truncated分布时,设置无限边界(Inf)可能导致数值不稳定。最佳实践是省略无限边界参数,让系统自动处理。 -
采样效率问题:对于ODE模型,采样可能效率较低。可以考虑:
- 使用自适应步长的ODE求解器
- 调整NUTS采样器的参数
- 采用变分推断作为初始近似
实践建议
- 对于复杂ODE模型,始终提供合理的初始参数值
- 监控ODE求解器的返回状态,处理失败情况
- 使用对数尺度参数化速率参数,因其通常跨越多个数量级
- 考虑参数的可识别性问题,SIR模型有时存在参数不可识别的情况
- 可视化中间结果以诊断拟合问题
结论
通过Turing.jl实现SIR模型的贝叶斯参数估计是一个强大但需要谨慎处理的过程。理解ODE求解器的数值特性和贝叶斯采样的行为对于成功拟合至关重要。本文介绍的技术和解决方案可以帮助研究人员避免常见陷阱,更有效地进行流行病学建模和分析。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19