使用Turing.jl拟合SIR疾病传播模型参数的技术实践
2025-07-04 17:32:54作者:农烁颖Land
引言
在流行病学建模中,SIR(易感-感染-恢复)模型是最基础且广泛使用的疾病传播模型之一。本文将详细介绍如何使用Julia生态中的Turing.jl库来拟合SIR模型的参数,特别关注在实际应用中可能遇到的参数初始化问题和解决方案。
SIR模型基础
SIR模型将人群分为三个互斥的群体:
- S(t):易感者数量
- I(t):感染者数量
- R(t):恢复者数量
模型的基本微分方程为:
dS/dt = -γ*S*I
dI/dt = γ*S*I - ν*I
dR/dt = ν*I
其中γ表示传播率,ν表示恢复率。
数据生成与模型实现
首先,我们需要实现SIR模型并生成模拟数据用于参数拟合。在Julia中,可以使用OrdinaryDiffEq包来定义和求解微分方程:
function sir(du, u, p, t)
S, I, R = u
γ, ν = p
infection = γ * S * I
recovery = ν * I
du[1] = -infection
du[2] = infection - recovery
du[3] = recovery
return nothing
end
生成模拟数据时,我们添加了一些噪声以模拟真实观测数据的不确定性。
贝叶斯参数估计
Turing.jl提供了强大的贝叶斯推断功能。我们构建一个概率模型来描述参数和观测数据之间的关系:
@model function fit_sir(data, prob)
γ ~ LogUniform(0.00001, 0.001)
ν ~ LogUniform(0.01, 0.9)
σI ~ LogUniform(0.1, 1)
prob = remake(prob; p = [γ, ν])
predicted = solve(prob; saveat = measured_t, verbose = false, maxiters = 10000)
if !SciMLBase.successful_retcode(predicted)
Turing.@addlogprob! -Inf
return nothing
end
for i in eachindex(predicted)
I = max(predicted[i][2], 0.0)
data[i] ~ truncated(Normal(I, σI *I); lower = 0.0)
end
end
关键问题与解决方案
在实际应用中,我们遇到了几个关键问题:
- 参数初始化问题:当没有提供初始参数时,采样器无法找到有效的初始点。这是因为微分方程求解对参数非常敏感,随机初始值可能导致数值不稳定。
解决方案是:
- 提供合理的初始参数猜测
- 使用更宽松的先验分布
- 采用多阶段拟合策略
-
截断分布问题:在使用
truncated
分布时,设置无限边界(Inf
)可能导致数值不稳定。最佳实践是省略无限边界参数,让系统自动处理。 -
采样效率问题:对于ODE模型,采样可能效率较低。可以考虑:
- 使用自适应步长的ODE求解器
- 调整NUTS采样器的参数
- 采用变分推断作为初始近似
实践建议
- 对于复杂ODE模型,始终提供合理的初始参数值
- 监控ODE求解器的返回状态,处理失败情况
- 使用对数尺度参数化速率参数,因其通常跨越多个数量级
- 考虑参数的可识别性问题,SIR模型有时存在参数不可识别的情况
- 可视化中间结果以诊断拟合问题
结论
通过Turing.jl实现SIR模型的贝叶斯参数估计是一个强大但需要谨慎处理的过程。理解ODE求解器的数值特性和贝叶斯采样的行为对于成功拟合至关重要。本文介绍的技术和解决方案可以帮助研究人员避免常见陷阱,更有效地进行流行病学建模和分析。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5