OpenLineage项目中Spark集成BigQuery时的输入数据集重复问题分析
问题背景
在使用OpenLineage的Spark集成(版本1.29.0)与BigQuery交互时,开发人员发现了一个有趣的现象:当通过Spark读取BigQuery表并进行表连接操作时,生成的OpenLineage事件中出现了重复的输入数据集记录。具体表现为每个参与连接的BigQuery表在inputs数组中出现了两次,这显然不符合预期。
问题复现
通过一个典型的Spark作业可以复现此问题:
- 首先创建两个简单的DataFrame并写入BigQuery作为测试数据
- 然后从BigQuery中读取这两个表
- 对这两个表进行连接操作(join)
- 将结果写回BigQuery
在OpenLineage生成的事件中,输入数据集出现了重复,例如:
"inputs": [
{"namespace": "bigquery", "name": "project.dataset.table1"},
{"namespace": "bigquery", "name": "project.dataset.table1"},
{"namespace": "bigquery", "name": "project.dataset.table2"},
{"namespace": "bigquery", "name": "project.dataset.table2"}
]
根本原因分析
经过深入调查,发现问题出在Spark DataFrame的alias操作上。当开发人员使用.alias()方法为DataFrame指定别名时,OpenLineage的Spark集成会错误地将同一个物理表识别为两个不同的逻辑数据集。
在原始代码中,连接操作是这样写的:
new_df = (
df1_bq.alias("t1")
.join(
df2_bq.alias("t2"),
col("t1.person_id") == col("t2.id"),
"left_outer",
)
)
这种写法虽然从Spark的角度看是完全合法的,但会导致OpenLineage在追踪数据血缘时产生重复记录。
解决方案
解决此问题的方法很简单:避免在连接操作中使用.alias()方法。修改后的代码如下:
new_df = (
df1_bq
.join(
df2_bq,
col("person_id") == col("id"),
"left_outer",
)
)
经过验证,这种写法确实消除了输入数据集的重复问题。
额外发现
在调查过程中,还发现了一个相关但不同的问题:当作业运行时,日志中会出现警告信息,提示无法在某些类上调用apply方法,并伴随NullPointerException。这表明在SaveIntoDataSourceCommandVisitor处理数据源保存操作时存在潜在问题,可能需要进一步调查。
最佳实践建议
基于此次经验,建议开发人员在使用OpenLineage的Spark集成时:
- 尽量避免在数据操作中使用alias,除非确实需要
- 监控OpenLineage生成的事件,确保数据血缘关系的准确性
- 关注运行时日志中的警告信息,及时报告潜在问题
- 考虑在复杂操作后验证OpenLineage事件的正确性
这个问题虽然看似简单,但它揭示了数据血缘追踪工具在实际应用中的一个常见挑战:如何准确识别和表示逻辑操作与物理数据源之间的关系。理解这类问题的本质有助于开发人员更好地利用OpenLineage等工具进行数据治理和血缘分析。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00