OpenLineage项目中Spark集成BigQuery时的输入数据集重复问题分析
问题背景
在使用OpenLineage的Spark集成(版本1.29.0)与BigQuery交互时,开发人员发现了一个有趣的现象:当通过Spark读取BigQuery表并进行表连接操作时,生成的OpenLineage事件中出现了重复的输入数据集记录。具体表现为每个参与连接的BigQuery表在inputs数组中出现了两次,这显然不符合预期。
问题复现
通过一个典型的Spark作业可以复现此问题:
- 首先创建两个简单的DataFrame并写入BigQuery作为测试数据
- 然后从BigQuery中读取这两个表
- 对这两个表进行连接操作(join)
- 将结果写回BigQuery
在OpenLineage生成的事件中,输入数据集出现了重复,例如:
"inputs": [
{"namespace": "bigquery", "name": "project.dataset.table1"},
{"namespace": "bigquery", "name": "project.dataset.table1"},
{"namespace": "bigquery", "name": "project.dataset.table2"},
{"namespace": "bigquery", "name": "project.dataset.table2"}
]
根本原因分析
经过深入调查,发现问题出在Spark DataFrame的alias操作上。当开发人员使用.alias()方法为DataFrame指定别名时,OpenLineage的Spark集成会错误地将同一个物理表识别为两个不同的逻辑数据集。
在原始代码中,连接操作是这样写的:
new_df = (
df1_bq.alias("t1")
.join(
df2_bq.alias("t2"),
col("t1.person_id") == col("t2.id"),
"left_outer",
)
)
这种写法虽然从Spark的角度看是完全合法的,但会导致OpenLineage在追踪数据血缘时产生重复记录。
解决方案
解决此问题的方法很简单:避免在连接操作中使用.alias()方法。修改后的代码如下:
new_df = (
df1_bq
.join(
df2_bq,
col("person_id") == col("id"),
"left_outer",
)
)
经过验证,这种写法确实消除了输入数据集的重复问题。
额外发现
在调查过程中,还发现了一个相关但不同的问题:当作业运行时,日志中会出现警告信息,提示无法在某些类上调用apply方法,并伴随NullPointerException。这表明在SaveIntoDataSourceCommandVisitor处理数据源保存操作时存在潜在问题,可能需要进一步调查。
最佳实践建议
基于此次经验,建议开发人员在使用OpenLineage的Spark集成时:
- 尽量避免在数据操作中使用alias,除非确实需要
- 监控OpenLineage生成的事件,确保数据血缘关系的准确性
- 关注运行时日志中的警告信息,及时报告潜在问题
- 考虑在复杂操作后验证OpenLineage事件的正确性
这个问题虽然看似简单,但它揭示了数据血缘追踪工具在实际应用中的一个常见挑战:如何准确识别和表示逻辑操作与物理数据源之间的关系。理解这类问题的本质有助于开发人员更好地利用OpenLineage等工具进行数据治理和血缘分析。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00