OpenLineage项目中Spark集成BigQuery时的输入数据集重复问题分析
问题背景
在使用OpenLineage的Spark集成(版本1.29.0)与BigQuery交互时,开发人员发现了一个有趣的现象:当通过Spark读取BigQuery表并进行表连接操作时,生成的OpenLineage事件中出现了重复的输入数据集记录。具体表现为每个参与连接的BigQuery表在inputs数组中出现了两次,这显然不符合预期。
问题复现
通过一个典型的Spark作业可以复现此问题:
- 首先创建两个简单的DataFrame并写入BigQuery作为测试数据
- 然后从BigQuery中读取这两个表
- 对这两个表进行连接操作(join)
- 将结果写回BigQuery
在OpenLineage生成的事件中,输入数据集出现了重复,例如:
"inputs": [
{"namespace": "bigquery", "name": "project.dataset.table1"},
{"namespace": "bigquery", "name": "project.dataset.table1"},
{"namespace": "bigquery", "name": "project.dataset.table2"},
{"namespace": "bigquery", "name": "project.dataset.table2"}
]
根本原因分析
经过深入调查,发现问题出在Spark DataFrame的alias操作上。当开发人员使用.alias()
方法为DataFrame指定别名时,OpenLineage的Spark集成会错误地将同一个物理表识别为两个不同的逻辑数据集。
在原始代码中,连接操作是这样写的:
new_df = (
df1_bq.alias("t1")
.join(
df2_bq.alias("t2"),
col("t1.person_id") == col("t2.id"),
"left_outer",
)
)
这种写法虽然从Spark的角度看是完全合法的,但会导致OpenLineage在追踪数据血缘时产生重复记录。
解决方案
解决此问题的方法很简单:避免在连接操作中使用.alias()
方法。修改后的代码如下:
new_df = (
df1_bq
.join(
df2_bq,
col("person_id") == col("id"),
"left_outer",
)
)
经过验证,这种写法确实消除了输入数据集的重复问题。
额外发现
在调查过程中,还发现了一个相关但不同的问题:当作业运行时,日志中会出现警告信息,提示无法在某些类上调用apply方法,并伴随NullPointerException。这表明在SaveIntoDataSourceCommandVisitor处理数据源保存操作时存在潜在问题,可能需要进一步调查。
最佳实践建议
基于此次经验,建议开发人员在使用OpenLineage的Spark集成时:
- 尽量避免在数据操作中使用alias,除非确实需要
- 监控OpenLineage生成的事件,确保数据血缘关系的准确性
- 关注运行时日志中的警告信息,及时报告潜在问题
- 考虑在复杂操作后验证OpenLineage事件的正确性
这个问题虽然看似简单,但它揭示了数据血缘追踪工具在实际应用中的一个常见挑战:如何准确识别和表示逻辑操作与物理数据源之间的关系。理解这类问题的本质有助于开发人员更好地利用OpenLineage等工具进行数据治理和血缘分析。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









