Actions Runner Controller中Runner意外终止问题的分析与解决
问题现象
在使用Actions Runner Controller部署自托管Runner时,用户遇到了Runner在执行任务过程中意外终止的问题。具体表现为:当Runner正在执行Go测试任务时,突然收到SIGINT信号并退出,返回错误代码130,导致任务无法正常完成。
问题分析
通过对日志和事件记录的深入分析,可以确定问题根源在于Kubernetes节点资源不足导致的Pod驱逐。以下是关键发现:
-
资源监控数据显示节点CPU使用率曾达到103%,内存使用率约60%,这表明CPU资源已经达到瓶颈。
-
Kubernetes事件日志中明确记录了Pod被驱逐的原因:"The node was low on resource: ephemeral-storage",说明临时存储空间不足是直接触发因素。
-
Runner日志显示Runner收到了SIGINT信号,这是典型的Pod被终止时的行为模式。
根本原因
经过排查,确定问题由以下因素共同导致:
-
临时存储空间不足:Runner Pod中的dind(Docker in Docker)容器和Runner容器消耗了大量临时存储空间,而节点配置的临时存储容量不足。
-
CPU资源限制:虽然CPU使用率超过100%未直接导致问题,但表明资源分配已经达到极限,增加了系统不稳定性。
-
资源请求未设置:Pod配置中未明确设置资源请求和限制,导致Kubernetes调度器无法正确评估资源需求。
解决方案
针对上述问题,推荐以下解决方案:
1. 增加节点存储容量
对于EKS集群,可以通过以下方式增加节点存储:
- 在Terraform配置中调整
disk_size参数 - 直接修改节点组的启动模板,增加EBS卷大小
- 考虑使用更大实例类型,通常附带更多临时存储
2. 设置合理的资源请求和限制
在Runner的部署配置中明确设置资源请求和限制:
resources:
requests:
cpu: "2"
memory: "4Gi"
ephemeral-storage: "10Gi"
limits:
cpu: "4"
memory: "8Gi"
ephemeral-storage: "20Gi"
3. 优化Karpenter配置(如使用)
如果使用Karpenter管理节点,应确保配置了足够的系统预留资源:
kubeReserved:
cpu: 1000m
memory: 3000Mi
最佳实践建议
-
监控与预警:设置Kubernetes资源使用监控,特别是临时存储的使用情况。
-
容量规划:根据工作负载特点预先评估资源需求,Runner执行编译、测试等任务通常需要较多CPU和存储资源。
-
渐进式调整:从小规模测试开始,逐步增加负载,观察资源使用模式。
-
日志收集:配置集中式日志收集,便于问题发生时快速定位原因。
总结
在Kubernetes环境中运行GitHub Actions Runner时,资源管理是关键。通过合理配置资源请求和限制、确保节点有足够容量,并建立有效的监控机制,可以显著提高Runner的稳定性和任务成功率。本例中的问题虽然表现为Runner意外终止,但根本原因在于底层基础设施资源不足,这提醒我们在使用类似Actions Runner Controller这样的工具时,需要全面考虑整个技术栈的配置和容量规划。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00