创新性激活下采样:SoftPool的魔力
2024-08-08 05:42:19作者:钟日瑜
引言
卷积神经网络(CNN)在减少激活图大小以扩大感受野和降低后续卷积计算需求方面,依赖于池化操作。理想的池化方法应在不影响计算和内存开销的前提下,尽可能减少信息丢失。为此,我们推出了SoftPool——一种基于指数加权的快速且高效的激活下采样方法。实验证明,SoftPool可以在缩小后的激活图中保留更多信息,从而提升CNN的分类精度。
技术剖析
SoftPool提供了一种新颖的处理方式,通过指数加权进行激活值的下采样,既保持了关键信息,又避免了显著增加计算负担。该方法适用于1D、2D及3D数据,允许在网络的不同层替换传统的池化层。
应用场景
无论是在图像识别领域,如ImageNet1K,还是在视频动作识别任务中,SoftPool都能展现其优势。只需简单地替换模型中的池化层,就可以观察到性能上的改善,而不会过度增加计算量和内存需求。图像和视频的直观展示(见上方表格)显示了SoftPool如何优雅地处理下采样,同时保持视觉信息的清晰度。
项目亮点
- 高效信息保留 - SoftPool在下采样过程中能更好地保留原始激活地图的信息。
- 广泛兼容 - 兼容多种深度学习框架,如PyTorch,并且可以轻松替换现有网络中的池化层。
- 灵活适用 - 支持1D、2D和3D数据,适应不同的计算机视觉任务。
- 性能提升 - 在多个基准测试中,包括ImageNet和视频数据集,都证明了准确性的显著提高。
获取与使用
要尝试SoftPool,确保你的torch版本不低于1.4。安装可以通过以下命令完成:
git clone https://github.com/alexandrosstergiou/SoftPool.git
cd SoftPool-master/pytorch
make install
(optional)
make test
项目还提供了预训练的ImageNet模型链接,方便直接进行推理或进一步的实验。
致谢与引用
项目灵感来源于Ziteng Gao的LIP库,并遵循MIT许可协议。请在使用本项目时引用相关论文:
@inproceedings{stergiou2021refining,
title={Refining activation downsampling with SoftPool},
author={Stergiou, Alexandros, Poppe, Ronald and Kalliatakis Grigorios},
booktitle={International Conference on Computer Vision (ICCV)},
year={2021},
pages={10357-10366},
organization={IEEE}
}
探索更多关于池化的策略,可以参考Ren Tianhe的pytorch-pooling仓库。
一起体验SoftPool带来的改变,让您的深度学习模型更上一层楼!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
289
2.61 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
305
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
181
暂无简介
Dart
576
127
Ascend Extension for PyTorch
Python
115
147
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
155
58