创新性激活下采样:SoftPool的魔力
2024-08-08 05:42:19作者:钟日瑜
引言
卷积神经网络(CNN)在减少激活图大小以扩大感受野和降低后续卷积计算需求方面,依赖于池化操作。理想的池化方法应在不影响计算和内存开销的前提下,尽可能减少信息丢失。为此,我们推出了SoftPool——一种基于指数加权的快速且高效的激活下采样方法。实验证明,SoftPool可以在缩小后的激活图中保留更多信息,从而提升CNN的分类精度。
技术剖析
SoftPool提供了一种新颖的处理方式,通过指数加权进行激活值的下采样,既保持了关键信息,又避免了显著增加计算负担。该方法适用于1D、2D及3D数据,允许在网络的不同层替换传统的池化层。
应用场景
无论是在图像识别领域,如ImageNet1K,还是在视频动作识别任务中,SoftPool都能展现其优势。只需简单地替换模型中的池化层,就可以观察到性能上的改善,而不会过度增加计算量和内存需求。图像和视频的直观展示(见上方表格)显示了SoftPool如何优雅地处理下采样,同时保持视觉信息的清晰度。
项目亮点
- 高效信息保留 - SoftPool在下采样过程中能更好地保留原始激活地图的信息。
- 广泛兼容 - 兼容多种深度学习框架,如PyTorch,并且可以轻松替换现有网络中的池化层。
- 灵活适用 - 支持1D、2D和3D数据,适应不同的计算机视觉任务。
- 性能提升 - 在多个基准测试中,包括ImageNet和视频数据集,都证明了准确性的显著提高。
获取与使用
要尝试SoftPool,确保你的torch版本不低于1.4。安装可以通过以下命令完成:
git clone https://github.com/alexandrosstergiou/SoftPool.git
cd SoftPool-master/pytorch
make install
(optional)
make test
项目还提供了预训练的ImageNet模型链接,方便直接进行推理或进一步的实验。
致谢与引用
项目灵感来源于Ziteng Gao的LIP库,并遵循MIT许可协议。请在使用本项目时引用相关论文:
@inproceedings{stergiou2021refining,
title={Refining activation downsampling with SoftPool},
author={Stergiou, Alexandros, Poppe, Ronald and Kalliatakis Grigorios},
booktitle={International Conference on Computer Vision (ICCV)},
year={2021},
pages={10357-10366},
organization={IEEE}
}
探索更多关于池化的策略,可以参考Ren Tianhe的pytorch-pooling仓库。
一起体验SoftPool带来的改变,让您的深度学习模型更上一层楼!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328