首页
/ 创新性激活下采样:SoftPool的魔力

创新性激活下采样:SoftPool的魔力

2024-08-08 05:42:19作者:钟日瑜

Python 3.x support Built with PyTorch MIT License


引言

卷积神经网络(CNN)在减少激活图大小以扩大感受野和降低后续卷积计算需求方面,依赖于池化操作。理想的池化方法应在不影响计算和内存开销的前提下,尽可能减少信息丢失。为此,我们推出了SoftPool——一种基于指数加权的快速且高效的激活下采样方法。实验证明,SoftPool可以在缩小后的激活图中保留更多信息,从而提升CNN的分类精度。

技术剖析

SoftPool提供了一种新颖的处理方式,通过指数加权进行激活值的下采样,既保持了关键信息,又避免了显著增加计算负担。该方法适用于1D、2D及3D数据,允许在网络的不同层替换传统的池化层。

应用场景

无论是在图像识别领域,如ImageNet1K,还是在视频动作识别任务中,SoftPool都能展现其优势。只需简单地替换模型中的池化层,就可以观察到性能上的改善,而不会过度增加计算量和内存需求。图像和视频的直观展示(见上方表格)显示了SoftPool如何优雅地处理下采样,同时保持视觉信息的清晰度。

项目亮点

  1. 高效信息保留 - SoftPool在下采样过程中能更好地保留原始激活地图的信息。
  2. 广泛兼容 - 兼容多种深度学习框架,如PyTorch,并且可以轻松替换现有网络中的池化层。
  3. 灵活适用 - 支持1D、2D和3D数据,适应不同的计算机视觉任务。
  4. 性能提升 - 在多个基准测试中,包括ImageNet和视频数据集,都证明了准确性的显著提高。

获取与使用

要尝试SoftPool,确保你的torch版本不低于1.4。安装可以通过以下命令完成:

git clone https://github.com/alexandrosstergiou/SoftPool.git
cd SoftPool-master/pytorch
make install
(optional)
make test

项目还提供了预训练的ImageNet模型链接,方便直接进行推理或进一步的实验。

致谢与引用

项目灵感来源于Ziteng Gao的LIP库,并遵循MIT许可协议。请在使用本项目时引用相关论文:

@inproceedings{stergiou2021refining,
  title={Refining activation downsampling with SoftPool},
  author={Stergiou, Alexandros, Poppe, Ronald and Kalliatakis Grigorios},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021},
  pages={10357-10366},
  organization={IEEE}
}

探索更多关于池化的策略,可以参考Ren Tianhe的pytorch-pooling仓库。

一起体验SoftPool带来的改变,让您的深度学习模型更上一层楼!

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
509