在terraform-aws-eks中自定义Cluster Autoscaler参数的最佳实践
在AWS EKS集群管理中,Cluster Autoscaler是一个至关重要的组件,它负责根据工作负载需求自动调整节点数量。然而,默认配置可能无法满足所有使用场景的需求,特别是当我们需要精细控制自动缩放行为时。
Cluster Autoscaler的核心参数
Cluster Autoscaler提供了多个可配置参数,其中scale-down-utilization-threshold
是一个关键指标。它定义了节点资源利用率的下限阈值,当节点资源使用率低于此值时,Cluster Autoscaler会考虑将该节点上的工作负载重新调度并移除该节点。
默认情况下,AWS EKS中的Cluster Autoscaler将此阈值设置为0.5(即50%)。这意味着如果一个节点的CPU和内存使用率都低于50%,且该节点上的所有Pod都可以被重新调度到其他节点上,那么该节点就会被标记为可删除。
实际应用场景中的挑战
在实际生产环境中,我们经常会遇到以下情况:
-
DaemonSet的影响:像kube-proxy、aws-node这样的系统组件会以DaemonSet形式运行在每个节点上,它们会占用一定的资源,可能导致节点利用率始终高于默认阈值。
-
突发性负载:某些应用可能有突发性负载特征,在低负载时期节点利用率可能长期处于较低水平。
-
成本优化需求:在开发测试环境中,我们可能希望更积极地缩减节点以节省成本。
解决方案实现
在terraform-aws-eks模块中,我们可以通过以下方式自定义Cluster Autoscaler参数:
module "eks" {
source = "terraform-aws-modules/eks/aws"
cluster_name = "my-cluster"
cluster_version = "1.27"
# 其他配置...
cluster_addons = {
aws-ebs-csi-driver = {
most_recent = true
}
kube-proxy = {
most_recent = true
}
vpc-cni = {
most_recent = true
}
coredns = {
most_recent = true
}
}
# 自定义Cluster Autoscaler参数
cluster_autoscaler_extra_args = {
"scale-down-utilization-threshold" = "0.3"
"scale-down-delay-after-add" = "10m"
"scale-down-unneeded-time" = "10m"
}
}
参数调优建议
-
scale-down-utilization-threshold:
- 生产环境建议值:0.3-0.5
- 开发测试环境建议值:0.2-0.3
- 设置过低可能导致频繁的节点伸缩,影响应用稳定性
-
scale-down-delay-after-add:
- 控制节点扩容后开始考虑缩容的等待时间
- 建议值:5-15分钟
-
scale-down-unneeded-time:
- 节点被标记为"不需要"后实际删除前的等待时间
- 建议值:5-15分钟
注意事项
-
修改这些参数前,需要充分理解其对集群稳定性的影响。
-
建议先在非生产环境测试新的参数配置。
-
监控集群的自动缩放行为,确保其符合预期。
-
考虑结合Pod Disruption Budget(PDB)来确保关键应用在节点缩容时不会中断。
通过合理配置这些参数,我们可以在保证应用可用性的同时,优化资源使用效率,降低云成本。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









