Botorch中风险规避多目标优化问题的解决方案
2025-06-25 00:03:25作者:尤峻淳Whitney
概述
在实验优化领域,我们经常遇到目标函数存在随机性的情况。本文探讨了如何使用Botorch框架实现风险规避的多目标优化,特别是在实验室环境中,当实验结果存在随机性时,如何避免采样噪声较大的区域。
问题背景
在实验室环境中进行优化时,实验结果往往存在随机性。我们可以通过重复实验来评估这种随机性,但传统的优化方法可能会忽略这种随机性,导致在噪声较大的区域进行不必要的采样。我们需要一种能够同时考虑目标函数期望值和方差的风险规避优化方法。
现有方法分析
直接建模方法
一种直观的方法是直接对Y_mean - β*Y_std进行建模:
- 计算重复实验的均值(Y_mean)和标准差(Y_std)
- 构建目标函数为Y_mean - β*Y_std
- 使用qLogNEHVI进行优化
这种方法简单直接,但可能无法充分利用数据中的信息,特别是当Y_mean和Y_std之间存在复杂关系时。
异方差GP建模方法
更高级的方法是使用异方差高斯过程(Heteroskedastic GP)分别建模Y_mean和Y_std:
- 使用HeteroskedasticSingleTaskGP分别拟合Y_mean和Y_std
- 在后验采样时考虑观测噪声(observation_noise=True)
- 应用GenericMCMultiOutputObjective对采样结果进行处理
这种方法能够更好地捕捉Y_mean和Y_std之间的关系,但实现上更为复杂。
技术实现细节
模型构建
from botorch.models.gp_regression import HeteroskedasticSingleTaskGP
from gpytorch.mlls.exact_marginal_log_likelihood import ExactMarginalLogLikelihood
def train_model(train_X, train_Y):
model = HeteroskedasticSingleTaskGP(
train_X=train_X,
train_Y=train_Y
)
mll = ExactMarginalLogLikelihood(model.likelihood, model)
fit_gpytorch_mll(mll, max_retries=5)
return model
风险规避目标函数
from botorch.acquisition.multi_objective.objective import GenericMCMultiOutputObjective
def risk_averse_objective(samples):
# samples shape: (n_samples, n_points, n_objectives)
return samples.mean(dim=0) - beta * samples.std(dim=0)
objective = GenericMCMultiOutputObjective(risk_averse_objective)
优化过程
from botorch.acquisition.multi_objective.logei import qLogNoisyExpectedHypervolumeImprovement
from botorch.optim import optimize_acqf
acq_func = qLogNoisyExpectedHypervolumeImprovement(
model=model,
ref_point=ref_point,
objective=objective,
X_baseline=train_X,
sampler=sampler,
observation_noise=True # 关键参数
)
X_cand, _ = optimize_acqf(
acq_function=acq_func,
bounds=bounds,
q=batch_size,
num_restarts=NUM_RESTARTS,
raw_samples=RAW_SAMPLES
)
方法比较与选择
-
直接建模法适合:
- 问题相对简单
- 计算资源有限
- Y_mean和Y_std之间的关系简单
-
异方差GP法适合:
- 问题复杂度高
- Y_mean和Y_std之间存在非线性关系
- 有足够的计算资源
实际应用建议
- 对于初次尝试风险规避优化的用户,建议从直接建模法开始
- 当直接建模法效果不佳时,再尝试异方差GP法
- β参数的选择需要根据实际问题进行调整,可以通过交叉验证确定最佳值
- 在实验室环境中,可以先在小规模实验上测试不同方法的效果
总结
Botorch提供了强大的工具来处理风险规避的多目标优化问题。通过合理选择建模方法和目标函数,我们可以在实验室环境中有效地进行优化,同时规避高噪声区域。两种主要方法各有优缺点,用户应根据具体问题和资源情况选择合适的方法。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~088CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
887
525

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
188

React Native鸿蒙化仓库
C++
182
265

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
368
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
737
105