Faster-Whisper 1.1.0版本中onnxruntime线程亲和性崩溃问题分析与解决方案
2025-05-14 13:46:52作者:劳婵绚Shirley
问题背景
Faster-Whisper是一个基于Whisper模型的高效语音识别工具库。在最新发布的1.1.0版本中,部分用户在使用过程中遇到了onnxruntime线程亲和性(thread affinity)相关的崩溃问题。这个问题主要出现在使用NVIDIA A40 GPU(4核CPU、48GB VRAM和16GB RAM)的环境中。
问题现象
当用户尝试使用Faster-Whisper 1.1.0版本进行语音转录时,系统会抛出以下错误:
pthread_setaffinity_np failed for thread: 785, index: 1, mask: {2, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.
随后进程会崩溃退出,返回错误代码-6(通常与内存问题相关)。
根本原因分析
这个问题源于onnxruntime在尝试设置CPU线程亲和性时的失败。具体来说:
- onnxruntime默认会尝试将计算线程绑定到特定的CPU核心上(线程亲和性),以提高性能
- 在某些系统配置下(特别是容器化环境),这种绑定操作会失败
- 当线程亲和性设置失败时,onnxruntime没有正确处理这个错误,导致后续的内存访问问题
解决方案
临时解决方案
对于急需解决问题的用户,可以采用以下临时解决方案:
- 环境变量法:在代码开始处添加以下环境变量设置
import os
os.environ["ORT_DISABLE_CPU_AFFINITY"] = "1"
os.environ["OMP_NUM_THREADS"] = "4"
os.environ["OPENBLAS_NUM_THREADS"] = "4"
os.environ["MKL_NUM_THREADS"] = "4"
os.environ["VECLIB_MAXIMUM_THREADS"] = "4"
os.environ["NUMEXPR_NUM_THREADS"] = "4"
- Monkey Patch法:修改SileroVADModel的初始化行为
import faster_whisper.vad
from faster_whisper.vad import SileroVADModel
class PatchedSileroVADModel(SileroVADModel):
def __init__(self, encoder_path, decoder_path):
import onnxruntime
opts = onnxruntime.SessionOptions()
opts.inter_op_num_threads = 1 # 设置为1最安全
opts.intra_op_num_threads = 1 # 设置为1最安全
opts.log_severity_level = 3
self.encoder_session = onnxruntime.InferenceSession(
encoder_path,
providers=["CPUExecutionProvider"],
sess_options=opts,
)
self.decoder_session = onnxruntime.InferenceSession(
decoder_path,
providers=["CPUExecutionProvider"],
sess_options=opts,
)
faster_whisper.vad.SileroVADModel = PatchedSileroVADModel
长期解决方案
开发团队已经在代码库中提交了修复方案,预计将在下一个版本中发布。主要修改包括:
- 显式设置onnxruntime的线程数,避免自动检测
- 提供更灵活的线程数配置选项
- 改进错误处理机制,使系统在亲和性设置失败时能够优雅降级
其他注意事项
-
ctranslate2版本兼容性:部分用户可能还会遇到与ctranslate2 4.5.0版本的兼容性问题,建议暂时降级到4.4.0版本。
-
性能调优:虽然将线程数设置为1最安全,但会影响性能。用户可以根据实际硬件配置适当增加线程数(如设置为CPU核心数)。
-
GPU加速:新版本的VAD编码器已支持GPU加速,有需要的用户可以考虑使用。
最佳实践建议
- 在容器化环境中部署时,建议预先测试线程亲和性设置
- 监控系统资源使用情况,特别是内存使用量
- 考虑使用BatchedInferencePipeline可以显著提高处理速度(约2倍)
- 保持相关依赖库(如torch、ctranslate2)的版本兼容性
通过以上分析和解决方案,用户应该能够顺利解决Faster-Whisper 1.1.0版本中的onnxruntime线程亲和性问题,并实现稳定的语音转录功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871