首页
/ 探索未来3D建模:Voxel2Mesh - 从体积数据到网格模型的创新之路

探索未来3D建模:Voxel2Mesh - 从体积数据到网格模型的创新之路

2024-06-13 11:47:37作者:谭伦延

在这个数字化时代,3D建模已成为科学研究和工程设计的重要工具。Voxel2Mesh是一个全新的开源项目,由Udaranga Wickramasinghe等人在2020年MICCAI大会上提出,它将深度学习与3D图像处理相结合,直接从体素数据生成高质量的3D网格模型,无需繁琐的后处理步骤。

项目简介

Voxel2Mesh是一个基于PyTorch的实现,其核心是Voxel2Mesh架构。该架构旨在解决传统方法中存在的问题,即通过CNN对单个体素进行标记然后进行后期处理生成表面表示,这种方法往往会导致失真并阻碍端到端训练。Voxel2Mesh则通过直接从3D图像体积转换为3D表面,提高了准确性,并且避免了上述问题。

技术分析

Voxel2Mesh的架构(如图1所示)包括一个立方体编码器和一个网格解码器。输入图像和初始球形网格一起被编码,随后在不同分辨率下被解码成立方体和网格。在解码过程中,网络非均匀地变形和细化网格,只在需要的地方添加顶点,这一特性使得模型能够精确地捕捉到复杂结构。

应用场景

Voxel2Mesh适用于各种领域,尤其是在医学成像中,如电子显微镜(EM)、磁共振成像(MRI)和计算机断层扫描(CT)的脑部和肝脏扫描。从项目提供的结果(如图2所示)可以看出,相比传统的CNN基线方法,Voxel2Mesh在减少假阳性区域方面表现更佳,这对于疾病诊断和治疗规划至关重要。

项目特点

  • 端到端训练:Voxel2Mesh允许直接从原始3D图像数据进行训练,无需中间体素标签,简化了工作流程。
  • 无后处理:生成3D网格模型过程中不引入人工痕迹,确保了模型的准确性和真实性。
  • 高效性能:与现有的3D分割方法对比,Voxel2Mesh在多个数据集上表现出优越的性能。
  • 模块化设计:易于理解和修改,方便研究者进行定制和扩展。

要开始使用Voxel2Mesh,请确保安装了PyTorch 1.4和Python 3.6.9,可以通过环境配置文件enviroment.yaml快速获取依赖项。项目提供了详细的运行指南,包括数据预处理和实验执行等步骤。

如果你在3D建模或医学图像分析领域寻找一种更为精确和高效的解决方案,那么Voxel2Mesh无疑是值得尝试的优秀工具。对于任何关于论文或代码的问题,欢迎在项目 Issues 中提问交流。

引用该项目时,请参考以下文献:

@InProceedings{10.1007/978-3-030-59719-1_30,
author="Wickramasinghe, Udaranga and Remelli, Edoardo and Knott, Graham and Fua, Pascal",
title="Voxel2Mesh: 3D Mesh Model Generation from Volumetric Data",
booktitle="Medical Image Computing and Computer Assisted Intervention -- MICCAI 2020",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="299--308", 
isbn="978-3-030-59719-1"
}

让我们一同探索这个前沿的3D建模新纪元,利用Voxel2Mesh开启您的创新之旅!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5