探索未来3D建模:Voxel2Mesh - 从体积数据到网格模型的创新之路
在这个数字化时代,3D建模已成为科学研究和工程设计的重要工具。Voxel2Mesh是一个全新的开源项目,由Udaranga Wickramasinghe等人在2020年MICCAI大会上提出,它将深度学习与3D图像处理相结合,直接从体素数据生成高质量的3D网格模型,无需繁琐的后处理步骤。
项目简介
Voxel2Mesh是一个基于PyTorch的实现,其核心是Voxel2Mesh架构。该架构旨在解决传统方法中存在的问题,即通过CNN对单个体素进行标记然后进行后期处理生成表面表示,这种方法往往会导致失真并阻碍端到端训练。Voxel2Mesh则通过直接从3D图像体积转换为3D表面,提高了准确性,并且避免了上述问题。
技术分析
Voxel2Mesh的架构(如图1所示)包括一个立方体编码器和一个网格解码器。输入图像和初始球形网格一起被编码,随后在不同分辨率下被解码成立方体和网格。在解码过程中,网络非均匀地变形和细化网格,只在需要的地方添加顶点,这一特性使得模型能够精确地捕捉到复杂结构。
应用场景
Voxel2Mesh适用于各种领域,尤其是在医学成像中,如电子显微镜(EM)、磁共振成像(MRI)和计算机断层扫描(CT)的脑部和肝脏扫描。从项目提供的结果(如图2所示)可以看出,相比传统的CNN基线方法,Voxel2Mesh在减少假阳性区域方面表现更佳,这对于疾病诊断和治疗规划至关重要。
项目特点
- 端到端训练:Voxel2Mesh允许直接从原始3D图像数据进行训练,无需中间体素标签,简化了工作流程。
- 无后处理:生成3D网格模型过程中不引入人工痕迹,确保了模型的准确性和真实性。
- 高效性能:与现有的3D分割方法对比,Voxel2Mesh在多个数据集上表现出优越的性能。
- 模块化设计:易于理解和修改,方便研究者进行定制和扩展。
要开始使用Voxel2Mesh,请确保安装了PyTorch 1.4和Python 3.6.9,可以通过环境配置文件enviroment.yaml快速获取依赖项。项目提供了详细的运行指南,包括数据预处理和实验执行等步骤。
如果你在3D建模或医学图像分析领域寻找一种更为精确和高效的解决方案,那么Voxel2Mesh无疑是值得尝试的优秀工具。对于任何关于论文或代码的问题,欢迎在项目 Issues 中提问交流。
引用该项目时,请参考以下文献:
@InProceedings{10.1007/978-3-030-59719-1_30,
author="Wickramasinghe, Udaranga and Remelli, Edoardo and Knott, Graham and Fua, Pascal",
title="Voxel2Mesh: 3D Mesh Model Generation from Volumetric Data",
booktitle="Medical Image Computing and Computer Assisted Intervention -- MICCAI 2020",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="299--308",
isbn="978-3-030-59719-1"
}
让我们一同探索这个前沿的3D建模新纪元,利用Voxel2Mesh开启您的创新之旅!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00